

Filed investigation of the FOS5-04 the gain fiber-optic seismograph operates in closed-loop configuration

Leszek R. Jaroszewicz^{1,2}, Anna Kurzych^{1,2}, Michał Dudek^{1,2}, Paweł Marć^{1,2} ¹Institute of Technical Physics, Military University of Technology., 2 gen. S. Kaliskiego Str., Warsaw, Poland ²Elproma Elektronika Ltd.,2A Duńska Str.,Czosnów

Fiber-Optic Seismograph historical brief

1998

GS-13P

Ω_{min}: 3.49·10⁻⁵rad/s SL: 380 m PANDA Diameter: 0.2 m

FORS-I Ω_{min} : 2.2·10⁻⁶ rad/s Ω_{max} : 4.8·10⁻⁴ rad/s SL: 380 m PANDA

Diameter: 0.2 m

2004, 2010

FORS-II, FOS1

Ω_{min}: 4.2·10⁻⁸ rad/s Ω_{max} : 4.8·10⁻⁴ rad/s; SL: 11 000 m SMF Diameter: 0.68 m FOS2

 $\Omega_{\rm min}$: 4·10⁻⁹ rad/s. Ω_{max}: 6.4·10⁻³ rad/s SL: 15 000 m SMF Diameter: 0.68 m

 $\Omega_{\rm min}$: 2.10⁻⁸ rad/s, Ω_{max} : few rad/s SL: 5 000 m SMF Diameter: 0.25 m

2019 FOS5-0# (#=1, 2, 3) $\Omega_{\rm min}$: 7.10⁻⁸ rad/s, SL: 5 000 m SMF, Diameter: 0.25 m FOS5-04

FOSREM – FOS3 & FOS4 Ω_{min} : 1.14·10⁻⁹ rad/s, SL: 14 400 m SMF, Diameter: 0.61 m Ω_{max} : 10 rad/s

FOS6 3-Axis with 10 µs time synchronization Ω_{min} : several dozen nrad/s Ω_{max} : 10 rad/s SL: 6 000 m SMF Diameter: 0.25 m Weight: 10 kg 429

FOS6

Motivation

Seismological application

Body wavesSurface wavesImage: Surface wavesImage: Surface wavesSwavesImage: SwavesImage: Swave

[Martínez-Moreno F., Ph.D. Thesis (2015)]

[Hinzen, J. Seisml., 16(4), (2012), 797–814] Tombstone in Kushiro Cemetery after the Tokachi-Oki Earthquake 2003

Rotational events realy exist in Earth structure and event as rotational waves

Engineering application

Low frequency content

- Higher stress in structural element
- Overturning moment
- Horizontal displacement of the center of mass

[Castellani, Guidotti, 2nd Workshop of IWGoRS Masaryk 's College Prague, (2010)]

High frequency content

- Local vibration of beams and columns
- Meaningless motion of the building center of mass

921 Earthquake Museum of Taiwan, Teichung. Effects of Chi-Chi earthquake, 1999 [private photo]

[https://www.businessinsider.com/earth quake-taiwan-east-coast-2018-2?IR=T]

[https://www.britannica.com/list/7-women-warriors]

Requirements

BACKGROUND

The direct utilization of the Sagnac effect

Vision

novation

Sagnac effect (1913) shows the difference between phase of two beams propagating around closed optical path, in opposite direction when this path is rotating with rotational rate Ω . In a fiber-optic implementation the rotation rate Ω is expressed by induced phase shift $\Delta \phi$ as:

$$\Omega = S_o \cdot \Delta \phi = \frac{\lambda c}{2\pi DL} \cdot \Delta \phi \qquad \text{UUC}$$

 S_0 – the optical constant of interferometer, L – length of the fiber in the sensor loop, D – sensor loop diameter, λ – wavelength of used source, c – velocity of the light in vacuum,

Fiber Optic Seismograph

01 OPTICAL PART

generates the phase shift ∆ø proportional to the measured rotation which rate Ω is perpendicular to the sensor loop minimum plane in so-called configuration

02 ELECTRONIC PART

enables to calculate and record information about rotational motions via digital closed-loop signal processing

Huge Fiber-Optic Seismograph

THEORETICAL SENSITIVITY $1.14 \cdot 10^{-9} \text{ rad/(s}/\text{Hz})$

FOS5-04 uses a 14.4 km long fiber wound in loop of 0.61 m in diameter. Transmission optical losses equal to 17.41 dB -

Fibre optic seismograph – Allan variance analysis

Position	Angle Random Walk [rad/√s]	Bias instability [rad/s]
Lab.	3·10 ⁻⁸	2·10 ⁻⁸
Field	8·10 ⁻⁷	4·10 ⁻⁸

Fibre optic seismograph – field application

Seismological observatory in the basements of Książ Castle in Wałbrzych, Poland 50°50'34"N 16°17'35"E

The observatory is located about 60 km away from the city of Legnica, which is the largest center of the Legnica-Głogów Copper District (LGCD)

Fibre optic seismograph – recordings

- Initial amplitude of about 0.44 mrad/s and signal duration of about 6 s
- Some low-amplitude perturbations repeating with a period of about 0.6 s
- Two examples of rotational events recorded on 5th October, 2021
- The maximum amplitudes of the recorded signals are equal to 1.62·10⁻⁵ rad/s and 1.35·10⁻⁵ rad/s
- A dedicated algorithm was implemented in post-processing

Analysis

Fibre optic seismograph – recordings

Analysis

- A long-term recording of averaged signal (50 s window) in the period from October 2021 to March 2022 together with the theoretical value of rotation rate calculated for this location (50°50'34"N 16°17'35"E)
- The observed peaks for <u>60 min, 30 min, 20 min, 15 min and 10 min</u> are directly connected with touristic activity in the Książ Castle basements between 10:00 AM and 6:00 PM
- Increases of the amplitude at the periods of approximately <u>one day</u> <u>and half a day</u> can be directly connected with changes of Earth's rotation rate due to diurnal polar motions, as well as diurnal and semidiurnal tides.

Conclusions

Rotational seismology undergoes a rapid development. FOS5-04 is capable to detect changes in Earth's rotation rate.

Current work next generation of FOS6 with 3-perpendicular axes

FOS 6 FROM SKY ACROSS GROUND UP TO UNDERGROUND

Financial support: National Centre for Research and Development, Poland project – POIR.01.01.01-00-1553/20-00

.....

.....

THREE AXES

- Measuring range from several dozen nrad/s to 10 rad/s (dynamics of 180 dB)
- Frequency detection bandpass: from 0.01 to 100 Hz
- Built-in time scale synchronization system (accuracy 10 μs)
- Weight: less than 10 kg
- Web-Based Management Interface
- Possibility of mobile, autonomous operation; equipped with photo-solar cells, battery or wind generator

Additional Remark:

Scientific Work versus Practical Uses

