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Abstract: This article reviews rotational seismology, considering different areas of interest, as well
as measuring devices used for rotational events investigations. After a short theoretical description
defining the fundamental parameters, the authors summarized data published in the literature in
areas such as the indirect numerical investigation of rotational effects, rotation measured during
earthquakes, teleseismic wave investigation, rotation induced by artificial explosions, and mining
activity. The fundamental data on the measured rotation parameters and devices used for the
recording are summarized and compared for the above areas. In the section on recording the
rotational effects associated with artificial explosions and mining activities, the authors included
results recorded by a rotational seismograph of their construction—FOSREM (fibre-optic system for
rotational events and phenomena monitoring). FOSREM has a broad range of capabilities to measure
rotation rates, from several dozen nrad/s to 10 rad/. It can be controlled remotely and operated
autonomously for a long time. It is a useful tool for systematic seismological investigations in various
places. The report concludes with a short discussion of the importance of rotational seismology and
the great need to obtain experimental data in this field.

Keywords: sensors; remote sensing; rotational seismology; earthquakes; artificial explosion; civil
engineering; structural health monitoring; rotational seismometer

1. Introduction

The full description of the seismic wave motion, in addition to translational compo-
nents, should also include three rotational components [1]. The common measurement
of the translational motion along three axes and the rotational motion around them can
improve S-wave identification. Moreover, such measurements can act as a “point seismic
array” to determine incoming waves’ speed, direction, and phase [2]. Therefore, it was nec-
essary to take steps to determine the nature of the rotational effects during earthquakes. For
a long time, an analysis of rotational seismic events was carried out only at the theoretical
level because no tools allowed for the registration of the rotational speed of soil particles,
which often did not exceed fractions of µrad/s. However, as a field of great interest, rota-
tional seismology drove the appearance of instruments enabling the direct measurement of
the rotational components of seismic vibrations. Rotational seismology was defined in 2009
as a dynamically evolving field of science covering all issues of rotational movements of
the ground originating from earthquakes, explosions, or atmospheric disturbances [3].The
attractiveness of this field is confirmed by its wide range of interests, such as strong motion
seismology, broadband seismology, earthquake engineering, earthquake physics, seismic
instrumentation, and seismic hazards. Physicists who study gravitational waves in ground-
based observatories are also interested in this field. Recently, in the global seismology of
earthquakes and dynamically induced seismicity, the monitoring of rotational vibrations
using new generation meters, i.e., rotational sensors, has been developing [4]. Seismic
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observations of waves conducted at surface stations prove the occurrence of additional
significant effects of rotational vibrations in the wave field [5,6]. Rotational seismology is a
promising field focusing on various goals, the achievement of which depends on future
research and the development of sensors. The rapid growth of this field is characterized by
the appearance of dedicated sections at conferences, an increase in the number of publi-
cations in scientific journals, and the emergence of new instruments. Modern acquisition
technologies, such as fibre-optic or ring laser gyroscopes, enable the observation of rota-
tional movements and integrate them with records of translational ground movements as
six-degree-of-freedom (6DoF) sensors [1]. Seismologists often wonder what the potential
applications of rotational seismology are and what benefits it can bring.

This paper aims to review the main recordings in rotational seismology, future research
prospects, and seismic tools used in this area. After some essential background preliminary
information, the main results of indirect rotation research are first reviewed. Then, the
second method of obtaining data is presented in detail. Rotational effect recordings are
presented and divided into specific areas of rotational seismology interest: rotational mo-
tions generated by natural earthquakes, teleseismic waves investigation, rotation associated
with artificial explosions, rotational effects in the mining activity region, as well as the
engineering area of rotational seismology. The basic working principle of the rotational
sensors used in the presented recordings is explained, along with the main performance
parameters and limitations. In sections concerning recording rotational effects connected
with artificial explosions and mining activity, the authors included data recorded by a
rotational seismograph of their construction—FOSREM (fibre-optic system for rotational
events and phenomena monitoring). The presented sensor uses the Sagnac effect to detect
the rotational motion component perpendicular to a specific sensor loop. FOSREM is
characterized by the ability to measure the rotation rate in broad ranges, both in amplitudes
from several dozen nrad/s up to 10 rad/s, and in frequencies up to 200 Hz. It can be
remotely controlled and operated autonomously for long periods, making it useful for sys-
tematic seismological studies at various locations. The report ends with a brief discussion
of rotational seismology’s significance and the necessity of obtaining data.

2. Theoretical Studies of Rotational Effects During Earthquakes

An earthquake releases stored elastic energy due to a sudden fracture and movement
of rocks inside the Earth. The earthquake type depends on the region where it occurs and
the geological makeup of that region. Due to earthquakes’ genesis, they can be divided
into volcanic (accompanied by volcanic eruptions, with the Earth shaking preceding the
eruption), collapse (the result of the collapse of cave ceilings, mine activities), and tectonic
(associated with movements of the lithosphere, orogenic processes). More than a million
earthquakes occur per year worldwide [7] and about 150,000 of them are strong enough
to be felt [8]. The energy released during an earthquake propagates in a form of seismic
waves, divided classically into two basic types: body and surface waves [9]. Body waves
propagate from the epicentre in all directions; among them, longitudinal P-waves (primary
waves) and transverse S-waves (secondary waves) can be distinguished [10]. P-waves cause
changes in the volume of the medium through which they pass by their compression and
rarefaction. The particles of the medium vibrate along the direction of wave propagation.
However, in the case of the S-wave, the particles of the medium vibrate perpendicularly to
the direction of wave propagation. Hence, their twofold polarization is possible: vertical
and horizontal. The P-wave velocity is higher than that of the S-wave. In the case of the
same propagation medium, the velocity value is about 1.8 times higher. Surface waves
spread over the Earth’s surface from the epicentre at a velocity of 3 to 3.8 km/s [10]. They
consist of two types of waves, known as Rayleigh and Love waves [10]. The first is a
gravitational-type wave, in which the movement of particles occurs along an ellipse set
vertically to the direction of the wave. The Love wave is a surface transverse wave with
horizontal polarization, causing horizontal vibrations perpendicular to the direction of
wave propagation.
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The above classical approach to seismology distinguishes only the linear types of
vibrations, which differ in polarization, velocity, and vibration direction. The history of
developing ground vibration displacement measurements using seismographs began in the
mid-18th century. In subsequent years, they have brought a dynamic development of trans-
lational seismic measurements by mechanical seismographs, both analogue and digital, and
meters of displacement, velocity, and acceleration. Nevertheless, observations of unusual
rotational and even helical deformations, which occurred after earthquakes in various
forms of architecture, suggested to scientists a different type of particle vibration than linear
ones. Kozák cites a summary of historical examples of observed rotational effects during
earthquakes [11]. Figure 1a shows examples of pillars, capitals, and tombstones rotationally
deformed by the 2009 L’Aquila (central Italy) earthquake [12]. It should also be underlined
that rotational components can also play a significant role in the damaging of high-rise
buildings; soil–structure interaction effects should be taken into account (Figure 1b,c). In
the case of low frequency content of rotation motion, the base of the structure can rotate
with an overturning motion (Figure 1c) [13].
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Figure 1. Observation of structural damages after earthquakes: (a) pictures of rotated objects in
downtown L’Aquila with non-coherent directions of rotation (both clockwise and counter-clockwise)
caused by the 2009 L’Aquila (central Italy) earthquake [12]; (b) damages in buildings after 21 Septem-
ber 1999, a strong earthquake of 7.3 in the central part of Taiwan, presented in the 921 Earthquake
Museum of Taiwan; and (c) example of an overall rotation of the base of the structure with an
overturning motion [14] during 1999 Kocaeli earthquake, Turkey.

The physical description of the rotational effects of earthquakes was based on two
models [15]. The description in 1846 by Mallet [16–19] is cited in seismology as the first
model explaining rotational effects during earthquakes. Mallet has used the principles of
classical mechanics to explain the observed rotational effects appearing as a phenomenon in
the near-field or even at the earthquake’s epicentre. According to Kozák [11], the historical
approach is primarily associated with the observed effects on vertically positioned objects
composed of blocks or layers separated by horizontal planes that can rotate due to friction.
Mallet’s work gives two primary mechanisms of rotational seismic effects, designated by
Kozák [15] as Rot1 and Rot2. The Rot1 model indicates that if a body lying on a horizontal
plane is subjected to the influence of a translational wave in the horizontal direction, it may
rotate if the vertical projection of the centre of gravity onto the contact plane is not identical
with the most vital point of adhesion of this body to the support [11].
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On the other hand, the mechanism marked as Rot2 indicates that the interactions
of the seismic wave components may gradually change the horizontal position of the
body, especially when successive wave components propagate to the considered point at a
different angle. As a result, a solid fixed on the surface can be gradually rotated around an
axis perpendicular to the horizontal plane by individual components of seismic waves [20].
Since the rotational effects were treated as a side effect or even a marginal effect of the
earthquake, until the middle of the last century, the explanation formulated by Mallet was
entirely satisfactory and often presented by seismologists.

Contrary to the first theoretical models, which treat rotational effects as secondary
and marginal phenomena related to the interaction of seismic waves, the second class
of models assumes the existence of an independent rotational component. The second-
class models have a more profound theoretical approach, containing elements of elastic
wave propagation [4,21] resulting from the progress of theoretical research in the field of
micromorphic and asymmetric theories of continuum mechanics and physics of non-linear
phenomena. Generally, according to [15], this class of models includes mechanisms marked
as Rot3–Rot6. The Rot3-Rot5 models are based on linear physics and describe rotational
effects as the propagation of elastic waves in an elastic or quasi-elastic medium. The
Rot6 model is based on the physics of non-linear phenomena that may occur in an elastic
medium under certain specific conditions [4].

The Rot3 model is similar to the Rot1 and Rot2 models. They are all based on the
mechanical principles of wave propagation and deal with rotation in the near field or layers
below the recording station. Rot3 assumes that the composition, structure of the medium,
depth of the local zone, and the parameters characterizing the tectonic stress can cause a
specific seismogenic motion [20].

The Rot4 mechanism is related to the actual rotational deformations and the specific
properties of the medium, such as micromorphic (where grain rotation and deformation
occur) or micropolar (where only grain rotation occurs) mediums, through which seismic
waves propagate. Based on the advanced theory of Poulos [22], Moriya [23], and Teis-
seyre [5], it was theoretically proved that it is possible to generate and then detect the
rotational components of seismic waves because of interactions with the medium in which
these waves propagate. In addition, the above authors claim that these waves can appear
and be recorded at small distances and probably at greater distances from the epicentre.
The issue of rotation propagation from the source over long distances seems to be positively
resolved in [24–26], where micropolar theory yields asymmetric seismic moment tensors
that allow a momentum exchange between the rotational microstructure in the source
region and the rest of the Earth and thus explicitly accounts for microstructural rupture
processes, which naturally engages a macroscopic displacement response.

The Rot5 model was formulated by Roman Teisseyre [4,27,28] and refers to rotation
and twisting movements existing in a homogeneous elastic medium. Starting from the
theory of an elastic medium with defects, this model is based on additional connections
between the asymmetric part of the stresses and the density of the self-rotating nucleus,
where the antisymmetric stresses correspond to the stress moments. Thus, this theory
proves that rotational components propagating as waves called seismic rotational waves
(SRW) can exist even in a uniformly elastic medium [29–31].

The subject matter of rotational effects has become the interest of many research groups,
leading to the establishment of an International Working Group on Rotational Seismology
(IWGoRS). The first IWGoRS workshop occurred in 2007 and is held successively every
three years. The upcoming IWGoRS workshop will take place in Poland in 2025 and will
be organized by the Opole University of Technology, Opole, Poland, and the Military
University of Technology, Warsaw, Poland. One of the most significant and one-of-a-kind
projects of IWGoRS took place in the Geophysical Observatory Fürstenfeldbruck, Germany,
from 18–22 November 2019. A unique experiment has been organized as “Rotation and
strain in Seismology: A comparative Sensor Test” by Felix Bernauer (Department of Earth
and Environmental Sciences, LUM, Munich, Germany) and Stefanie Donner (Federal
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Institute for Geosciences and Natural Resource, Hannover, Germany) [32]. It has gathered
more than 40 different rotational motion and strain sensors in one field test. Moreover, the
definition of rotational seismology emerged in 2009 as an appealing research domain of
all aspects of the Earth’s rotation caused by earthquakes, explosions, and environmental
vibrations [33]. This field of study is still developing, and in this paper, the authors
included a review of the most essential recordings associated with rotational seismology.
The attractiveness of this field is confirmed by its wide range of interests covering two
borderline areas of scientific research:

(a) the scope related to geophysical sciences, such as broadband seismology [34],
weak and strong seismology [35], earthquake physics [36,37], prediction of seismic haz-
ards [38], research in the seismotectonic field [39], geodesy [40], research on the existence
of gravitational waves [41]. In brief, these areas are seismological applications.

(b) the scope related to engineering aspects of earthquakes: behaviour of irregular
engineering structures [42,43] and Earth movements caused by the exploitation of mineral
deposits, e.g., rock masses [44]. In brief, these are engineering applications.

Nowadays, the analysis of translational and rotational motion, using 6DoF measure-
ments as mentioned in the first paragraph, is gaining momentum [1,45–47]. Rotational
seismology is the most appealing field in seismology. Nevertheless, much work is needed
to build principles and extract as much information from recordings as possible. The
benefits of machine learning should also be incorporated into rotational seismology, which
can significantly contribute to the development of earthquake catalogues, seismic analysis,
ground motion forecasting, and application to geodetic data [48–50]. This paper expects the
review of rotational event recordings to present an essential improvement in the practical
directions of rotational seismology through reliable rotational sensor construction and
recorded data.

2.1. Mathematical Description

The classical elastic waves in solid bodies can be described using the essential linear
theory of elasticity as follows [51]:

Three equilibrium conditions:

σij,j + bi = 0, (1)

kinematic relations:
εij =

1
2
(
ui,j + uj,i

)
, (2)

with the compatibility constraints:

εij,kl + εkl,ij = εik,jl + ε jl,ik, (3)

and the constitutive law:
σij,j = λδijεkk + 2εij, (4)

where σij—the components of the Cartesian stress tensor; εi—tensor of the principal strain;
δij—the Kronecker delta, u—the displacement vector of medium particles, µ, λ—Lame’s
elastic constants, which describe the linear stress–strain relationship in an isotropic material
medium. The µ is called the modulus of transverse stiffness or Kirchhoff modulus and
is a measure of the material medium’s resistance to shear. The shorthand notation has
been used above (i.e., the subscript i is understood to take the sequential values 1, 2, 3; in
case of nine quantities, there is a double-subscripted notation ij employed, where i and j
range from 1 to 3 in turn; these nine components with a higher form of a vector is called a
tensor; an exception is made when two subscripts are identical, such as kk; in this case, the
Einstein summation convention states that a subscript appearing twice is summed from 1
to 3; partial differentiation is abbreviated using the comma convention).

The above equations must be supplemented with appropriate boundary conditions
(kinematic and static) and initial conditions. Therefore, one should focus on isotropic



Sensors 2024, 24, 7003 6 of 38

bodies, which constitute the subject of most problems in the linear theory of elasticity. The
following transformations can reduce the basic set of differential and algebraic equations
of the linear theory:

- in the equilibrium equations, one expresses stresses by strains in accordance with
physical relationships;

- in the obtained equations, one expresses deformations by displacements in accordance
with geometric relations. Ultimately, one obtains the differential equation of elastic
vibrations in an isotropic medium, i.e., for constant Lame parameters, the index
notation takes the following form [52]:

µui,jj + (µ + λ)uj,ji + bi = ρ
..
ui, (5)

where bi—body force in i direction;
..
u—acceleration of particles of the medium. In

vector notation, Equation (5) takes the following form [52]:

(µ + λ)∇(∇·u) + µ∇2u + b = ρ
..
u, (6)

where ρ—mass density. A very often used assumption that significantly simplifies
the solution is neglecting the contribution of mass forces (b = 0). This results in
homogeneous equations that are much easier to solve. With this assumption, the
influence of external mass forces is often replaced by a statically equivalent system of
external surface forces applied appropriately to the body surface. Neglecting mass
forces, dividing by ρ, and substituting the expressions for the square of the P-wave
velocity (CP

2 = (λ + 2µ)/ρ) and the square of the S-wave velocity (CS
2 = µ/ρ), one

obtains the basic seismic wave equation for a homogeneous medium [53]:

C2
P∇(∇·u)− C2

S∇× (∇× u) =
..
u (7)

The above equation shows that the propagation speed CP occurs with divergence ∇·u,
which refers to changes in volume or radial displacement (P-wave). The propagation speed
CS is related to ∇× u, that is, to the changes in rotation or lateral displacement (S-wave).
This means that, in addition to the registration of translational vibrations, we can also
expect the registration of rotational vibrations.

It should be underlined that in the mathematical description, there is a clear correlation
between the angular velocity of ground vibrations and the appropriate vector of the time
derivative of the displacement of ground vibrations [54]:

ω =
(
ωx, ωy, ωz

)
=

1
2
∇× .

u =
1
2
∇× V (8)

where ω—angular velocity vector,
.
u—time derivative of the vibration displacement vector,

and V—translational vibration velocity vector.
The importance of the above equations and theories is essential to perform simulations

and conversion methods; they provide the three rotational components indirectly, which
are presented in Section 3.

2.2. The Formalism of Rotational Motion Measurements

A wide range of signal amplitudes characterizes measurements in seismology. The
lowest values of measurable amplitudes are determined by natural background noise,
which is highly frequency dependent. The largest ground displacements generated by seis-
mic waves reach 1 m, while the lowest value is usually a 1 nm displacement for 1 Hz [55].
It gives a dynamic range of the order of 90 dB. Moreover, the frequency band of interest
is wide and depends on the seismic sources, from µHz for Earth tides to 1000 Hz for P-
and S-waves. Most seismological instruments measuring translational ground motion are
pendulum seismometers and accelerometers [56]. The seismic signals recorded by the
sensors are converted into a digital format by analogue-to-digital converters. Typically,
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the amplitude resolution is one µV with a sampling rate of 100 samples/s. The converted
signal is sent to a recorder, usually connected to a computer that collects data continuously
or records seismic events only. Recorders and sensors are installed in seismological stations,
usually located in remote areas away from human activity. It also causes relatively tricky
access. Seismological stations form a seismic network that primarily aims to locate earth-
quakes and determine their magnitude. Seismic networks range from tiny ones, such as
mining networks that record microearthquakes, to global networks that record data from
all over the world. Ground movement is generally measured in the X, Y, and Z imple-
mentation. Until recently, only three degrees of freedom related to translational motion or
acceleration along the Cartesian frame of reference have been recorded. Three additional
rotational degrees of freedom during ground vibration measurements can provide new
information valuable to the seismological society [34,57–59]. As was mentioned previously,
they can help understand the internal structure of the Earth’s seismic sources and are also
crucial for engineering [60,61], e.g., monitoring of skyscrapers or wind farms. In addition,
studies of nature close to ground motion are essential for seismic engineers interested in
seismically safe designs and for seismologists studying the physical processes leading to
the complexity of ground motion [62].

The basic seismometric parameters used to characterize the intensity of the impact of
vibrations on the surface (on buildings, infrastructure, and people) include the following:

• peak value of displacement, velocity, and acceleration of vertical ground vibrations:
PGDZ, PGVZ, and PGAZ [63,64];

• peak value of displacement, velocity, and acceleration of horizontal ground vibrations
in a particular direction: PGDH, PGVH, and PGAH [64,65];

• the maximum value of the velocity of horizontal ground vibrations PGVHmax and the
maximum value of horizontal accelerations PGAHmin determined as the resultant of
the horizontal maximum of the vector length [65,66];

• duration of the horizontal component of vibration velocity tHv and vibration accelera-
tion tHa [67];

• vibration frequency [68,69],
• response spectrum [64,70];
• quotient of the peak vibration values PGA/PGV [34,71];
• Arias intensity [72];
• accumulated absolute speed value CAV [68,69];
• cumulative absolute displacement value CAD [69];
• parameters characterizing rotational vibrations [54,73].

Some definitions and parameters must be presented and described to stay consistent
in the paper. Figure 2 shows the axes in the Cartesian coordinate system for translational
velocity components (Vx, Vy, Vz) measured by the classical kind of seismometers applied in
seismology and components of rotation (ωx, ωy, ωz) measured by rotational sensors. It is
the view of the full six-component of seismic ground motion system. The basic parameters
describing rotational vibrations directly following from Equation (8) are as follows [54,74]:

• component of the angular velocity of ground vibrations around the vertical axis Z:

ωz =
1
2

(
∂uX
∂Y

− ∂uY
∂X

)
, (9)

• component of the angular velocity of ground vibrations around the horizontal Y and
X axes:

ωY =
1
2

(
∂uX
∂Z

− ∂uZ
∂X

)
, (10)

ωX =
1
2

(
∂uY
∂Z

− ∂uZ
∂Y

)
. (11)
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Figure 2. The Cartesian coordinate system for translational (Vx, Vy, Vz) and rotational (ωx, ωy, ωz)
velocity components.

The vertical rotation rate ωz is often called yaw, twist, or torsion. The horizontal rota-
tion angles ωx and ωy are often called rocking, roll (around the X-axis), and pitch (around
the Y-axis). Roll, pitch, and yaw are the most often used parameters in the navigation
literature. One can find the most common expressions of twist, torsion, and rocking in
seismology. Tilt is often misunderstood or unclear; one can find several definitions of
this term [75]. Basing on [3], twist describes a shear deformation caused by a torsional
moment. Torsion means rotation or strain around the vertical axis of the structure. Rocking
determines the rotational component around the horizontal axis [3]. Engineers often evolve
this term as a rotation of an entire structure around a horizontal axis.

In the seismology literature, the terms “acceleration” and “velocity” implicitly concern
translational particle acceleration and velocity. Nowadays, translational acceleration and
velocity are specified to differ from rotational velocity. For the same purpose, peak ground
rotational velocity, defined as the maximum of the absolute value of the rotational velocity
around the three axes, is used in this paper. Nevertheless, sometimes, this parameter is
calculated using various formulas. For instance, in [76], the peak ground rotation rate is

calculated by PG
.

ω = max
√

ω2
R+ω2

T
2 , where ωR and ωT denote the radial and transverse

rotation rates from 20 s before the origin time of the event to 120 s afterward; on the other
hand, in [77], the peak ground rotational velocity at the measuring site is calculated by

PGRV =max
t

√
RV2

x(t) + RV2
y(t) + RV2

z(t), where RVx—horizontal peak ground rotational
velocity in the East–West direction, RVy—horizontal peak ground rotational velocity in
the North–South direction, and RVz—vertical peak ground rotational velocity. These
parameters should be always provided with definitions and indications of particular axes.
Most of the peak ground rotational velocity values provided in Tables 1–3, 5, 9 and 10
(PGωz, PGωx, PGωy) mean the absolute value of the rotational velocity along the indicated
axis to review and compare the data from diversified sources.

2.3. Classification of Rotational Motion Regards Sources

The classification of rotation measurements in terms of the maximal amplitudes of the
recorded events is extensive, and its results strongly depend on the source of the vibration.
One can distinguish the following groups:

1. rotational motions of the ground in the near-source field: Bouchon and Aki [78]
recorded a natural fault earthquake at seismological stations located 1–20 km from
the fault and 1–50 km from the epicentre. The recorded signal amplitude reached the
value of 0.1–1.5 mrad/s. Belvaux et al. [19] presented a rotation with an amplitude of
40–200 µrad/s recorded 6 km from the earthquake epicentre. Takeo et al. recorded a
rotation in the near field with an amplitude of 30 µrad/s [30] and 26 µrad/s [79];

2. rotation associated with volcanic eruptions: the signal amplitude of the recorded
rotation near the volcano was several dozen µrad/s [80]. Data obtained at the Hawai-
ian Volcano Observatory by the rotational sensor blueSeis-3A showed the maximal
signal amplitude of the order of 2.5 mrad/s during earthquakes associated with large
collapse events during the summit eruption [81];
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3. rotation recorded during chemical explosions: these events are characterized by a high
signal amplitude; the signal was recorded at a distance of 1 km from the explosion and
had an amplitude of 38 mrad/s [82];

4. rotation connected with engineering seismology: according to data from [83], rotations
with an signal amplitude of mrad and greater are expected;

5. tilt measurements with an signal amplitude of 5 µrad during an earthquake of magni-
tude M = 6.7 from a distance of 311 km from the epicentre [84];

6. rotation measurements of teleseismic waves were detected using a ring laser gyro-
scope [34,58,73,85–90] with relatively small signal amplitudes of the recorded rotations,
from a few nrad/s to 400 nrad/s;

7. measurements of rotation related to the physics of seismological interactions of the
order of 10−8 rad/s [91]. Studies to identify and separate waves enable better and
more modern interpretations of various seismic waves, including the identification of
P-waves in opposition to the SV and SH components [92] and the separation of Love
and Rayleigh waves;

8. rotation studies in a micromorphic medium with a signal amplitude below 10−7 rad/s [93].

The above list, as well as considerations regarding recording conditions, allow the
rotation measurement to be divided into the detection of high-amplitude rotation (strong-
motion) of the order of tens of µrad/s and more—points 1–4 and rotation with a very low
amplitude of the order of tens of 10−7 rad/s, or less—points 6–8. The frequency range can
reach 10−4 Hz to 100 Hz. For near-field observation, they appear to be strong at frequencies
around ~0.01–0.1 Hz [34]. In the case of mining tremors, the signals are characterized
by a more comprehensive spectral range of vibrations, from 0.5 Hz to over 10 Hz, and it
is impossible to isolate one fundamental frequency. This paper performs the division of
rotational effect measurements according to its source.

For all the above reasons, the intensification of practical aspects in the field of rotational
seismology is challenging due to rigorous technical requirements [94,95]. The sensors for
rotational seismology must be characterized by a high sensitivity over a broad frequency
range as well as a wide range of detected rotation because the expected ground rotation rate
is in the range from 10−8 rad/s, even up to a few rad/s, as was shown in the above review.
One of the most important attributes of a rotational sensor the is complete insensitivity to
linear movements or the ability to measure rotational and translational movements simul-
taneously and then separate them. The self-noise levels must be temperature-independent,
and stability against magnetic field variations is required. The sensors need to be mobile,
small, and equipped with an independent power supply to install the sensor in hard-to-
reach seismological stations. Generally, two basic methods exist to obtain seismic rotational
components: indirectly by numerical conversion of data from dense arrays of classical
sensors [54] and directly by carrying out measurements applying appropriate rotational
sensors [44].

3. Indirect Rotation Research by Numerical Conversion

Table 1 contains the parameters of the rotational signals obtained indirectly by numeri-
cal conversion of data from dense arrays of classical sensors presented in the literature from
1982 to 2021. The study by Bouchon and Aki [78] used the discrete wavenumber represen-
tation method to analyse the amplitude and shape characteristics of the deformation and
rotation wave near the theoretical slip and slip damage embedded in a layered environment.
The maximum rotational velocity generated by the 30 km buried strike–slip fault and 1-m
slip was calculated to be approximately 1.5 mrad/s, and the peak ground rotation was
approximately 0.3 mrad. This paper provided the impetus for Cao and Mavroeidis [96],
who developed strategies for the kinematic modelling of potential strike–slip earthquakes
by simulating the time histories of ground deformation and rotation near the contact zone
using finite differential translational motions generated at very closely spaced stations. The
maximum peak ground rotation ranged from 20 to 300 µrad depending on the strike–slip
earthquake scenario.
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Huang [57] presented calculated rotations from translational velocities by numerically
integrating accelerograms from a dense acceleration system at the Li-Yu-Tan Dam, located
6 km north of the Chi-Chi earthquake fault. The amplitude for each of the three axes ranged
from 40 to 300 µrad/s.

Stupazzini et al. [97] simulated the rotational wave field induced by an earthquake of
magnitude 6.0 and 4.5 in the Grenoble Valley (French Alps) using 3D numerical modelling
to replicate the rotational wave field generated by strike–slip earthquakes in the near field.
The assumed peak ground rotation for receivers located on soft ground was approximately
one mrad, and the maximum ground rotation speed was ten mrad/s.

Reference [98] provides an estimation of the rotation of the 28 September 2004, main-
shock in Parkfield, CA, USA which included an earthquake of magnitude 6.0 and after-
shocks of magnitude 4.7–5.1. The data were recorded at 12 accelerograph stations of the
U.S. Geological Survey Parkfield (UPSAR) seismic network, consisting of three-component
accelerographs located 8.8 km from the San Andreas Fault, USA. Wang et al. [99] simulated
several magnitude 7 earthquakes with different sources on the Newport-Inglewood fault
embedded in the 3D Los Angeles Basin using a finite-difference method over a frequency
range of up to 0.5 Hz. The analysis showed that the variability of the hypocentre leads to
significant changes in the ground rotation speed.

Simulations of three well-documented seismic events were analysed in [100]. These
include the 2004 magnitude 6.0 Parkfield earthquake, the 1979 magnitude 6.5 Imperial Val-
ley earthquake, and the 1999 magnitude 7.5 Izmit earthquake, analysed by finite-difference
simulation translational movements at very closely spaced stations using a kinematic
modelling approach.

Based on six-component seismic data, the author of [54] compared three different
conversion methods: the traveling wave, the frequency domain, and the difference one.
The paper aimed to analyse the characteristics and feasibility of these methods in estimat-
ing rotational components using translational observations. The traveling wave and the
frequency-domain methods can convert translational components into rotational compo-
nents, but the frequency-domain method shows greater accuracy. However, the difference
method, although it requires denser reference stations, greatly impacts the accuracy of rota-
tional component calculations. The independence of the six seismic components requires
rough estimates at more minor deformations, which do not replace accurate observation of
the rotational components [54].



Sensors 2024, 24, 7003 11 of 38

Table 1. Parameters of the rotation (selected maximum value) obtained indirectly by numerical analysis. Legend: Y—year of publication, Ref.—reference,
F—frequency, ES—earthquake source mechanism, Mw—magnitude, R—epicentral distance, PGVh—peak value of horizontal ground velocity, PGVv—peak value of
vertical ground velocity, PGωz,x,y—peak value of rotational velocity around the particular axis.

Y Ref. F [Hz] ES Mw R [km] PGVh [m/s] PGVv
[m/s]

PGωz *
[µrad]

PGωz
[mrad/s]

PGωx *
[µrad]

PGωx
[mrad/s]

PGωy *
[µrad]

PGωy
[mrad/s]

1982 Bouchon and Aki [78] strike–slip fault 6.6 1 1/1.6 - 200/
300 1.2/1.5 700/800 -

2003 Huang [57] <1.0
The 1999 Chi-Chi,

Taiwan earthquake
(thrust fault)

7.7 6 0.33 0.50 171 0.385 44 0.126 177 0.331

2008 Spudich and Fletcher [98] <3.6

2004 Parkfield,
California, earthquake

and aftershocks
(strike–slip fault)

6.0 8.8 0.25

-

88.1 1.09 68.9 0.925

- -
4.7 14.0 0.013 4.69 0.0944 4.74 0.0926

5.1 14.4 0.060 20 0.446 0.177 0.372

4.9 18.3 0.027 13.6 0.247 9.73 0.215

2009 Stupazzini, et al. [97] <2 valley of Grenoble,
French (strike–slip) 6.0 0.02–0.90 0.4 0.3 1 690 8.24 4000 8.66 1310 0.6

2009 Wang, et al. [99] <0.5 Newport–Inglewood
strike–slip 7.0 <80 - - - 0.05–1.5 * 0.05–0.350 * - 0.05–0.6 *

2019 Cao and Mavroeidis [96]

hypothetical strike–slip
earthquake

6; 6.4; 6.8; 7.2;
7.6 1–50 <0.72 <0.24 69.2–194.2 16.9–94.3 - 22.7–98.5 -

dip-slip earthquake 6; 6.4; 6.8; 7.2;
7.6 1–50 <0.66 <0.93 54.1–144.3 117.9–440.6.9 - 114.2–325.3 -

2021 Cao and Mavroeidis [100] <1.0

Izmit earthquake 1999 7.5 1–50 0.11–1.26 * 0.03–0.54 * 52.6–471 *

-

6.2–162 *

-

10.7–123 *

-2004 Parkfield 6.0 1–50 0.005–0.39 * 0.003–0.18 * 5.6–75 * 2.5–63 * 1.4–48 *

1979 Imperial Valley 6.5 1–50 0.06–1.17 * 0.007–0.18 * 21–210 * 9.7–120 * 3.9–48 *

* PGωz,x,y—ground rotation around the particular axis depending on the distance.
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4. Rotation Effects Recordings During Natural Earthquakes

Natural earthquakes have their source mainly in processes occurring on faults, i.e.,
large dislocations in the Earth’s crust. This is where the rock blocks move, causing charac-
teristic vibrations felt by people as seismic tremors. There are two main mechanisms for
earthquakes on faults: an increase in stress within a rock mass that exceeds the friction
on the fault surface between adjacent rock blocks or a reduction in friction on the fault
surface. The latter scenario is observed where water enters the fault naturally or due to
human activity, leading to increased rock mobility on the fault and potentially triggering
an earthquake. One records earthquakes not only on faults but also when magma in the
volcano chamber moves and pushes rocks apart. Human activity provides even more such
examples, such as when one injects water under pressure into a rock to extract, for example,
gas from it. In this way, one changes the stress in the rock mass and provokes tremors.

One of the first successful direct recordings of rotational motions was carried out by
Robert Nigbor [82]. In 1994, Robert Nigbor used the Systron Donner, Concord, USA, triaxial
gyro sensor to record rotation generated by a powerful explosion of 1 kT explosives [82].
It will also be presented in the section “Recordings associated with artificial explosions”,
see Table 5. Nevertheless, the author would like to mention the sensor used. The three
commercial rotational micro-electro-mechanical-system (MEMS) sensors represent modern
mechanical angular sensors based on highly miniaturized microelectromechanical devices.
MEMS gyroscopes apply the Coriolis force to detect the angular velocity, which is related
to the acceleration that the body must experience to stay on the rotating surface. Several
existing technological solutions exist for these device’s construction, e.g., vibrating tuning
fork gyro, vibrating-wheel gyro, resonant wheel gyro, hemispherical resonant gyro, and
Foucault pendulum gyro. Applying a similar recording system, Takeo [59,101] (see Table 2)
measured signals in the near-source region of the earthquake swarm at the offshore area of
Ito in the Izu Peninsula, Japan. He showed that recorded rotational motions are several
times larger than those simulated by Bouchon and Aki [78] (see Table 1) based on the
dislocation theory. The maximum recorded rotational velocities around the vertical axis
were equal to 3.3 mrad/s (earthquakes with a magnitude of 5.7) and about 8.1 mrad/s
for earthquakes larger than 3.5. The observational system has been installed at Cape
Kawana, 3.3 km from both Earthquake epicenters. The applied Systron Donner MotionPak
triaxial gyro sensor has a flat frequency response to rotational velocities around three axes
perpendicularly intersecting each other from DC to 75 Hz, and full-scale output equals
±0.873 rad/s.

Applying the same system, in [102], Takeo presented 200 records in near-field regions
with hypocentral distances less than 8 km during an earthquake swarm in April 1998
offshore Ito, Izu Peninsula, Japan. The recorded rotational rate varied from 4 µrad/s to
8 mrad/s depending on the magnitudes (1.2–5) and epicentral distances (1.5–10 km); the
maximum amplitude signal in the function of the epicentral distance and earthquake mag-
nitude is presented in Figure 3. The sensitivity of the used sensors in the above literature
positions was limited to strong-motion signals obtained in near field and artificial sources.
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Table 2. Parameters of the rotation recordings generated by natural earthquakes. Legend: Y—the
year of publication, Ref.—reference, ES—earthquake source, Mw—magnitude, R—epicentral distance,
PGVh—peak value of horizontal ground velocity, PGVv—peak value of vertical ground velocity,
PGωz,x,y—peak value of rotational velocity about a particular axis.

Y Ref. ES Sensor Mw R [km] PGVh
[mm/s]

PGVv
[mm/s]

PGωz
[mrad/s]

PGωx
[mrad/s]

PGωy
[mrad/s]

1998,
2006

Takeo [59,101] strike–slip fault, 1997
Systron Donner

triaxial gyro
sensor

5.7 3.3 290 500 3.3 26 5.9

5.3 3.3 200 100 8.1 27 30

2009 Takeo [102]
seismic swarm

activities at offshore
Ito, Japan, 1998

Systron Donner
triaxial gyro

sensor

5.0 5.6 100 60 3 6 8

3.6 5.9 6 2 0.2 1 1

2.4 4.9 6 0.3 0.03 0.2 0.2

2009 Liu et al. [64]
local earthquakes at
the HGSD station in

Eastern Taiwan
R-1

5.1 51 - - 0.63 ~0.4 ~0.3

2.5–6.63 14.3–260.4 - - 0.004–0.63 - -

2010 Brokešová and
Málek [103]

earthquake swarm in
Western Bohemia,

2008
Rotaphone 3DOF 2.2 4.4 400 - 0.15 - -

2013 Brokešová and
Málek [104]

an earthquake
recorded at the

station
Sergoula, Greece

6 DOF Rotaphone 4.3 5 4.5 9 ~0.4 ~0.8 ~0.7

2016 Yin et al. [105]

215 events at The
Garner Valley

Downhole Array is
in California,

2008–2014

R-1 3.0–7.2 14–207 - - 0.006–0.453 - 0.004–0.7

2017
Jaroszewicz et al.

[106]
local earthquake,
Jarocin, Poland

TAPS
3.8 200 - -

0.005
- -

AFORS 0.039

2018 Ringler et al. [76]

local earthquake

Two SMHD (ATA)

4.2 0.5 22.1 11 1.12/0.85 - 2.11/1.86

local earthquake 2.8 ≤220
- -

~0.0005 ~0.00025 ~0.00025

155 local earthquake ≥2.0 ≤220 0.0002–2 0.0002–2 0.0002–2

2020 Wassermann et al.
[81]

volcano-tectonic
earthquake BlueSeis-3A 5.3 1.5 2 1 2.4 2.5 2.4

2022 Wassermann et al.
[107]

Stromboli volcano,
Italy activity BlueSeis-3A - - <0.01 <0.02 <0.0005 <0.001 <0.001

The R-1 rotational sensor is one of the electrochemical-type sensors. They use liquid as
an inertial mass in their construction. Fluid movement is recorded via multilayer platinum
electrodes staggered between microporous insulating spacers. The electrolyte can move
freely through a flexible diaphragm at each end of the transducer channel. The DC voltage
applied to the electrodes creates an ion concentration gradient. Due to the conductivity
of the electrolyte, the bias voltage and the associated current generate a concentration
gradient only between the electrodes. When the sensor experiences acceleration due to
ground movement, liquid flows to the electrodes. It causes a change in the current intensity
proportional to the liquid’s flow velocity and the ions’ concentration. This technique is
known in the literature as Molecular Electronic Transfer (MET) [93]. Such a transducer is
essentially a linear velocity sensor [108] in which a symmetrical arrangement of electrode
pairs enhances the linearity of the transducer capable of utilizing a feedback loop. This
technology was used to build the angular velocity sensor, which was applied to construct
an annular channel filled with electrolytes. When the sensor rotates, the MET transducer
placed transversely in the liquid channel is forced to move, which, assuming the inertia
of the liquid, is converted into an electrical signal. Exemplary models of such sensors
can be found on the manufacturers’ websites (for example, RSB-20 by PMD Scientific
Inc. (Boston, MA, USA) [www.pmdsci.com, accessed on 20 December 2023], R-1 and R-2
by Eentec (Vilnius, Lithuania) [www.eentec.com] accessed on 22 September 2024). The
tests indicate that the R-1 sensor has a linear sensitivity of 6 × 10−5 rad/s/(m/s2) and a
cross-axis sensitivity of 2% [109]. The quality of the calibration process has been questioned,
especially in the low-frequency range (below 1 Hz) [110]. Because the frequency response is

www.pmdsci.com
www.eentec.com
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not flat above 1 Hz, the dynamic range is only 80 dB as opposed to the declared value above
110 dB [109]. In [94], the thermal stability of the R-1 and R-2 sensors was verified. The
obtained deviation of the nominal values of the constant signal in the temperature range
of 20 ◦C–50 ◦C was 27% for R-1 and 18% for R-2. This allows us to conclude that sensors
based on the use of liquids require further technical improvements and solutions. Despite
the above, the R-1 sensor was one of the most often used to register rotational motion for
local earthquakes [64,105], artificial explosions [110], as well as mining activity seismic
areas [5,77]. The peak rotational velocity recorded by the R-1 for 52 local earthquakes
(0.004–0.634 mrad/s) at the HGSD station in Eastern Taiwan in the function of the sensor’s
distance (14.3–260.4 km) and earthquake magnitude (2.57–6.63) is presented in Figure 4
based on [64].
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Rotational sensors designed by the company Applied Technology Associates (ATA),
Albuquerque, USA [76] represent a different technology utilizing fluid. The fundamental
physical principle of their working design is called magneto-hydrodynamics (MHD). The
main part of the sensor is a rotating mass consisting of an electrically conductive fluid and a
permanent magnet attached to the device’s housing. If the device rotates, the magnetic flux
moves through the conductive fluid with a relative velocity, which creates an electric field
between the magnetic flux and the line with the fluid. This interaction, called the MHD
effect, causes a voltage difference between the electrode surfaces, which a transformer
or other active electronic configuration can amplify. The output voltage is proportional
to the angular velocity. In 2017, a proto-seismic magnetohydrodynamic (SMHD) three-
component rotational rate sensor by ATA recorded rotational motions of 155 earthquakes
of magnitude above 2.0 at a temporary after-shock station in Waynoka, Oklahoma, within
220 km of the station [76]. The experiment lasted about two months, and the highest
rotational components were recorded during the earthquake with a magnitude of 4.2 at
a distance of 0.5 km from the station. The maximum peak ground rotational rate was
equal to 2.11 mrad/s, 1.86 mrad, and 1.12 mrad/s for horizontal and vertical components,
respectively. Moreover, the data from rotational sensors have been widely compared with
data recorded by a translational broadband seismometer.

In reference [106], an example of rotational events recorded at the Książ observatory in
Poland on 6 January 2012, at approximately 200 km from the source is presented. Data were
collected by mechanical rotational seismometers and an optical instrument using the Sagnac
interferometer during an earthquake with a magnitude of 3.8 near Jarocin, Poland. The
summarised data presented in Figures 3 and 4 show that rotational peak amplitudes have
an exponential relation to the event magnitude for short (2–10 km) and long (20–260 km)
epicentral distances. However, the above statement cannot be confirmed by data presented
by Brokešová and Málek [103], who had the opportunity to record rotation rates during the
swarm activity in the period from 6 October 2008 to 10 December 2008, in the region of Nový
Kostel, Czech Republic, about 15 km north of the town Cheb (Eger). The recorded maximum
amplitude of rotation rate was about 0.15 mrad/s, which was generated by the earthquake
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of local magnitude 2.2 with epicentral distance to the recording station of the order of
4.4 km, and the depth of the earthquake source was about 8.6 km. The results obtained by
the 3DOF records were in good agreement with the waveform of the transverse acceleration
after proper filtering. According to research, swarms in this region are caused by solutions
that penetrate from the upper mantle and the characteristic geological structure. Fluids fill
the cracks, rising toward the Earth’s surface until they encounter a barrier in the form of
an impermeable layer of granite. Over the years, the solutions accumulate in the fractures
and their pressure increases until the stress is released in a series of small earthquakes. In
2008, 2500 shocks with a magnitude up to 3.8 were recorded in a month-long swarm. The
3DOF and 6DOF (Prototype I and II, described in Section 6) sensors have been successfully
recording several rotational effects with totally different seismotectonic characteristics in
the period 2008–2013 in various regions: Czech Republic (West Bohemia/Vogtland, the
vicinity of Prague, the Hronov-Poříčí fault zone), and the Provadia region in Bulgaria, the
Gulf of Corinth, Greece, and the volcanic complex of Eyafjalla and Katla in South Iceland.
The range of rotation rate peak values recorded in the abovementioned period generated by
weak earthquakes was in the range of 0.3–150 µrad/s around the vertical axis recorded by
3DOF sensors and 0.06–400 µrad/s recorded by 6DOF sensors. The horizontal component
was recorded by 6DOF sensors in the range of 0.1–700 µrad/s. The signal amplitude varies
with the earthquake magnitude (0.3–4.7) and epicentral distance 0.67–290 km (Figure 5).
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For a detailed description of these devices and their recordings, authors refer to [111];
some of the event’s parameters are presented in Figure 5.

The high potential of using multi-station 6DOF seismic data recordings on an active
volcano was presented in [107] where the research was performed by installing the three
broadband seismic stations (Nanometrics Trillium Compact 120 VS and RefTek RT130)
together with three blueSeis-3A FOGs at Stromboli volcano, Italy. The results confirmed
that SV and SH waves greatly contribute to the Stromboli volcano’s wave field, consistent
with previous array-based findings. Additionally, by locating the signals and combining
gyroscope and seismometer measurements, one can better understand the polarization
properties of these waves. The recording of wavefield gradients brings many benefits but
also challenges, especially with local changes in velocity and topography. The research
shows clear differences between the three groups of volcanic events, one of which may be
difficult to detect with traditional seismometers. This discovery highlights the need for
further research into using 6DOF techniques in the monitoring of volcanic activity.

5. Teleseismic Waves Recordings

Large ring lasers are the most sensitive sensors for ground rotation detection, and
they play a significant role in rotational seismology, especially in teleseismic wave record-
ings. These devices were initially constructed to monitor the Earth’s absolute rotation
rate [112], but further, they brought a wide range of local earthquake observations and
teleseismic wave research (Table 3). The large ring lasers detect the beat frequency of two
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counter-propagating laser waves, which is proportional to the rotation rate component
perpendicular to the sensor’s active area. Since the early 60s, they have been leaders
in inertial navigation and motion control as ring laser gyroscopes (RLGs). They offer a
wide dynamic range, high precision, and small size, and they do not require any moving
mechanical parts [113]. RLGs used for inertial navigation usually have an area < 0.02 m2,
corresponding to a perimeter of 30 cm or less. Large ring lasers were built with a much
larger perimeter to increase sensitivity beyond navigational RLGs. Several papers have
been mentioned to maintain a historical chronology that includes data gathered by this
technological solution.

Table 3. Parameters of the recordings associated with teleseismic waves. Legend: Y—year of
publication, Ref.—reference, ES—earthquake source mechanism, Mw—magnitude, R—epicentral
distance, PGVh—peak value of horizontal ground velocity, PGωz,x,y—peak value of rotational
velocity about particular axis.

Y Ref. ES Sensor Mw R [km] PGVh [m/s] PGωz
[nrad/s]

PGωx
[nrad/s]

PGωy
[nrad/s]

2000
Pancha et al.

[88]
New Ireland earthquake, 1999 C-II, G0 7.0 ~4700

-

10 (C-II) 5 (G0)

-Vanuatu earthquake, 1999 C-II 7.3 ~3500 8
-

2005 Igel et al. [58] Thrust earthquake Japan G-ring 8.1 ~8830 ~35

2007 Igel et al. [34]
from local event, Germany to

Great Andaman
earthquake

G-ring 5–9 370–12,700 - ~0.10 –40 - -

2009
Schreiber et al.

[114]

Earthquake Kamachatka,
2006

GEOsensor

7.6 ~6500 5197 ~10

- -Earthquake Mexico, 2006 5.4 ~2000 4646 ~5

Earthquake California, 2007 3.6 ~200 8670 ~16

Earthquake California, 2007 3.9 ~250 14,512 ~30

2011 Lin et al. [87] Earthquake in Wenchuan
Sichuan, China R-1 7.9 1948 <0.01 1000 10,000 10,000

2012 Belfi et al. [85] Earthquake in Japan, 2011 G-Pisa 9.0 - - ~60 - -

2017 Ross et al. [89]

earthquake Papua New
Guinea, 2016

beam
rotation sensor

BRS

7.9

-

~150 × 10−6

-

~30 *

earthquake Vanuatu, 2016 6.7 ~6 × 10−6 ~2 *

earthquake New Caledonia,
2016 7.2 ~40 × 10−6 ~10 *

earthquake north of
Ascension Island, 2016 7.1 ~15 × 10−6 ~4.5 *

earthquake New Zealand,
2016 7.8 ~200 × 10−6 ~60 *

earthquake of Panguna,
Papua New Guinea, 2017 7.9 ~150 × 10−6 ~30 *

2018 Simonelli et al.
[90]

Series of earthquakes in Italy,
2016 GINGERino 3.5–5.9 38–77 - ~600–17,000 - -

2020 Sollberger et al.
[73]

Earthquake Gulf of Alaska,
2018 ROMY 7.9 - - ~6 ~8 ~4

2021 Igel et al. [86]

Papua New Guinea
earthquake, 2019

ROMY

7.6 14,000

-

~5 ~9
-

Turkey earthquake, 2019 5.7 1500 ~5 ~9

Austria earthquake, 2018 3.8 144 ~18.9 ~18

* PGωz,x,y [nrad]—ground rotation around the particular axis; in [89], this is referred to as tilt.

Stedman presented the possibility of measuring local rotational effects of seismic
waves by a ring laser in 1995 during a regional earthquake [115]. Professor Hans Bilger
of Oklahoma State University, Stillwater, USA designed the applied C-I He-Ne ring laser
system. It was built at the University of Canterbury, Christchurch, New Zealand [116,117].
The system included a rectangle of four supermirrors with nominal 99.9985% reflectors and
He–Ne laser. It enclosed an area of 0.755 m2 and was one of the first ring lasers unlocked at
the Earth rate. In 1999, ring lasers recorded rotational components of teleseismic surfaces
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and body waves from two strong events with magnitudes 7.0 and 7.3 [88]. C-II and G0
were installed in a cavern 30 m underground at Cashmere, Christchurch, New Zealand [88].
The system named C-II has been mounted locally horizontally, and the rotation rate of the
local vertical axis has been measured. Hence, it was sensitive to SH or Love wave rotation.
During the experiment, the G0 detected a rotation rate about a local horizontal axis. Hence,
it detected SV or Rayleigh wave rotation. The maximum signal amplitude of the observed
rotation was of the order of 10 nrad/s (Figure 6).
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Figure 6. Recording of rotational component around the vertical axis (solid line) and transverse
acceleration (dashed), measured by C-II and EARSS/40T, respectively, during the New Ireland
earthquake, 19 January 1999 03:35:33.8 (magnitude 7.0) [88].

C-II was a slightly larger device than C-I with similar construction, but its improved
mechanical monolithic construction and mirror design assured high stability of less than
1 part in 107 over weeks and months. The G0 laser was 3.5 m on its side, and it was a
kind of construction bridge between C-II and the G-ring, which was installed at Wettzell
in Bavaria, Germany, in 2002. G0 was only expected to demonstrate a single longitudinal
mode operation on a cavity much larger than C-II. However, G0 performed remarkably
well as the Sagnac gyroscope, achieving a sensitivity of 0.0116 nrad/s/

√
Hz, and because

much larger structures such as UG-1 (366.8 m2) and UG-2 (834 m2) became constructed in
Christchurch, New Zealand. UG-2 obtained a sensitivity of 0.0078 nrad/s/

√
Hz. However,

the sheer physical dimensions of these lasers raised many problems, e.g., out-gassing
hydrogen due to stainless steel pipes used for construction, astigmatism, and aberration of
beams. Nevertheless, in [118], one can find data indicating that C-II, UG1, and G-ring have
all observed daily motions of the Earth’s rotation axis at the poles driven by the effects
of lunar gravity on the inhomogeneous mass distribution of the Earth. The G-ring is a
monolithic square ring laser with a perimeter of 16 m constructed on top of a large disk of
Zerodur. Its area is 16 times larger than in the C-II; therefore, it was much more sensitive to
rotation (0.012 nrad/s

√
Hz). In 2005 [58], Igel et al. presented recordings of weak rotational

motion excited by the 2003 Tokachi-oki, Japan, earthquake at the far-field station using
30 rings with a maximal absolute rotation rate of approximately 35 nrad/s. The recordings
of rotation around the vertical axis gathered by the G-ring presented in [34] for several
earthquakes showed a peculiar consistency between rotational ground motions around the
vertical axis and transverse acceleration. Moreover, the G-ring provided certainty that this
technology is suitable for seismological observations. It provided a stimulus to construct
the ring laser system named the GEOsensor, which was explicitly designed for seismology
with a similar sensitivity [119]. After experimental laboratory tests, the GEOsensor was
installed in Pinon Observatory, CA, USA. The size of the ring laser was not limited by the
design, and it could be customized according to the available space at the host observatory.
GEOsensor has recorded data gathered during several earthquakes presented in [114], with
a length of 1.6 m on its side, which provides a total area of 2.56 m2. Another identical
design to the GEOsensor, named PR-1, was located in Christchurch, New Zealand, and
mounted vertically on the seventh floor of a high-rise building (the Rutherford building
on the central campus of the University of Canterbury, New Zealand). Its role was to
monitor the dynamics of the building influenced by external perturbations. It recorded S-
and P-waves during an earthquake on 1 February 2008, which was an estimated 1580 km
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distance from the earthquake source [120]. The data in [120] shows that the tilting effect is
significant during the earthquake.

G-Pisa, GINGERino, and GP-2 were prototypes heading for the construction of GIN-
GER (Gyroscopes IN General Relativity) as a result of a collaboration of the University
of Pisa, Italy, Technical University of Munich, Germany, and University of Canterbury,
New Zealand for the terrestrial detection of the Lense–Thirring effect using ring laser gyro-
scopes [121]. G-Pisa had a heterolithic design based on the GEOsensor with dimensions of
0.9 m × 0.9 m to 1.4 m × 1.4 m [121]. GINGERino has a side length of 3.6 m and is mounted
on a granite support. GINGERino is located in Laboratori Nazionali del Gran Sasso, Italy
(LNGS) to determine the noise and stability of the underground laboratory. GP-2 functioned
as crucial instrumentation for preventing fluctuations in the laser cavity dimensions [122].
GINGERino has been recording earthquake-generated rotational motions from October
to November 2016 associated with an energetic seismic sequence at a local distance. The
rotational sensor has been installed with a broadband seismometer inside the Laboratori
Nazionali del Gran Sasso, Italy, the underground laboratory of the Italian National Institute
for Nuclear Physics. The analysis of dozens of recorded events showed that peak values
of rotation rates and horizontal acceleration are markedly correlated. This suggests that
rotation might scale with distance, magnitude, site geology, and fault type, like the scaling
of peak velocity and peak acceleration in empirical ground–motion prediction relationships.
Peak values of rotation rate around the vertical axis for 33 presented events ranged from
6.14 × 10−7 to 1.74 × 10−5 rad/s [90] (Figure 7). As shown in Figure 7b, the rotational peak
amplitudes have an exponential relation to event magnitude, like the results discussed in
the previous section.

The most significant interest should be directed at the system ROMY (ROtational
Motions in seismologY), which was constructed in 2016 at the site of the Geophysical
Observatory in Fürstenfeldbruck, Germany. It is unprecedented in its scale construction,
including a four-component large-scale ring laser array [86,123]. Each component is per-
formed as an equilateral, triangular ring laser and arranged to form a downward-pointing
tetrahedron. Three triangular gyroscopes have a length of 12 m on each side, while the
sides of the horizontal ring on the top are shorter by 1.0 m to fit rigidly on the concrete
monument. Figure 8 shows the top view from the ground and the system’s schema [124].
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ground, (b) the schema of the ROMY [124].
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The resolution of the measured signal of a ring laser gyroscope is proportional to the
ratio of the quotient of area and perimeter enclosed by the beam path. The main parameters
of the above-mentioned large ring lasers are included in Table 4.

Table 4. Summary of the main parameters of the large ring laser.

Large Ring Laser Picture Year of
Installation Place of Installation Area [m2] Perimeter

[m]
Sensitivity

[nrad/s/
√

Hz]

Long-Term
Stability of

∆Ω/ΩE

C-I
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367 (7.5 m × 

21 m) 77 - - 

GEOsensor 
 

[133] 

2005 
California, 

USA 
2.56 (1.6 m 

square) 6.4 0.108 1 × 10−7 
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Table 4. Cont.

Large Ring Laser Picture Year of
Installation Place of Installation Area [m2] Perimeter

[m]
Sensitivity

[nrad/s/
√

Hz]

Long-Term
Stability of

∆Ω/ΩE

GP-2
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2016 Fürstenfeldbruck,
Germany

72 (3 vertical)
50 (horizontal)

36
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The rotational component of teleseismic surface wave observation has also been car-
ried out in the Laser Interferometer Gravitational-Wave Observatory (LIGO) Hanford
Observatory (LHO), USA. Data have been recorded by a rotation sensor, denoted in [89] as
a beam rotation sensor (BRS), and an array of STS-2 seismometers from Rayleigh waves
of six teleseismic events from different locations and with magnitudes ranging from 6.7
to 7.9. BRS includes a meter-scale beam balance suspended by a pair of flexures with a
resonance frequency of 10.8 mHz. The angle concerning the sensor’s platform is measured
using an autocollimator. This sensor can resolve ground rotation angles of less than one
nrad/

√
Hz above 30 mHz and 0.2 nrad/

√
Hz above 100 mHz around the single horizontal

axis [140]. In the frequency band ranging from 10 to 100 mHz, the BRS has comparable sen-
sitivity to the angle sensitivity of C-II. The analysed data show the possibility of resolving
local seismological parameters by rotation and translation components recording from a
single station.

6. Recordings Associated with Artificial Explosions

Another type of data source is rotation effects recorded during artificial explosions
(see summarised data in Table 5). It was commenced by Robert Nigbor in 1994 by recording
a rotation generated by a powerful explosion of 1 kT explosives during a non-proliferation
experiment at the Department of Energy, Nevada Test Site, USA [82]. He developed the
first prototype of a 6DoF strong-motion accelerograph system. Three single-axis analogue
gyroscope (Systron Donner, Concord, USA, Model QRS11-00010-200) has been used in [82],
which had frequency response between DC and 60 Hz. The recorded peak ground rotation
rates around the vertical axis reached 38 mrad/s at a distance of 1 km generated by the
underground explosion.

Wassermann et al. [110] used a seven-element seismic array with an R-1 rotational
sensor at the array centre to record rotation generated by the demolition blast of a 50 m
high building in Munich, Germany, at a distance of about 250 m. The blast consisted of
150 kg of explosives fired sequentially to reduce ground tremors. The observed seismic
wave occurred at a frequency range of 1–8 Hz. The comparison of the array-derived
measurements with the measured signals showed reasonable results for at least the higher
frequency portions of the analysed signals. The authors underlined doubts about the
quality of the R-1’s noise level, especially in the lower frequency (<1 Hz). The peak rotation
velocity reached about 0.5 mrad/s around the horizontal Y-axis. The peak rotation velocity
of about two orders of magnitude higher than that observed in [110] has been recorded
during the TAIGER (TAiwan Integrated GEodynamics ReSearch) experiment [141] and
by the R-1. There were two explosions set off with 3000 kg and 750 kg explosives. The
distance between the explosions and the place of instrument installation varied from 250 m
to 600 m. The highest peak ground rotational velocity has been recorded around the X-
component at a distance equal to 254 m: 2.74 mrad/s and 1.75 mrad/s for 3000 kg and



Sensors 2024, 24, 7003 21 of 38

750 kg explosives, respectively. The values of the recorded peak ground rotation and peak
ground translational acceleration were only about one and a half times larger for the first
explosion, even though the first shot used explosives four times larger than the second one.

METER-03 presented in Figure 9, was used to record data in [142]. According to
manufacturer specifications, it has a noise floor of 5.7 × 10−7 rad/s and a flat frequency
response of 0.05–50 Hz. Data have been compared with data derived from records of
magnetometers and geophones. Magnetometers work according to Faraday’s law. Copper
wire is wound around a magnetically permeable core. When there is a change in the
magnetic flux perpendicular to the cross-section of the coil, a current is induced in the wires.
The ignition of the Betsy gun was the source of seismic events in Silver Lake, CA, USA.

Table 5. Parameters of the recordings associated with artificial explosions. Legend: Y—year of
publications, VS—vibration source mechanism, R—distance between sensor installation and source
of vibration, PGVh—peak value of horizontal ground velocity, PGVv—peak value of vertical ground
velocity, PGωz,x,y—peak value of rotational velocity around the particular.

Y Ref. VS Sensor R [km] PGωz [mrad/s] PGωx [mrad/s] PGωy [mrad/s]

1994 Nigbor [82] 1 kT chemical explosion at
the Nevada Test Site

QRS11 (Systron
Donner) 1 24 38 -

2009 Wasserman et al. [110]
Demolition blast of
building in Munich,

Germany
R-1, eentec 0.2 0.02 0.008 0.05

2009 Lin et al. [141]

3000 kg explosives,
TAIGER experiment,

Tawian R-1, eentec 0.2539–0.6082
0.268–0.966 0.370–2.741 0.627–2.524

750 kg explosives, TAIGER
experiment, Tawian 0.301–0.563 0.235–1.750 0.394–1.185

2013 Brokešová and Málek
[104]

medium-size quarry blast,
3044 kg explosive, Czech

Republic

6 DOF
Rotaphone 0.362 ~1 ~4.5 ~2

2018 Barak et al. [142] Ignition of Betsy gun at
Silver Lake, California METR-03 <1 - <0.1 <0.2

2019
Kurzych et al. [75]

Teisseyre et al.
[75,143]

Digging shafts with the
multiple blasts technique,

Książ, Poland

FOSREM, TAPS,
RS.LQ–RP/P 0.075 0.05–1 - -

2021
Bernauer et al. [32]

Kurzych et al.
[144,145]

500 g explosive,
Fürstenfeldbruck,

Germany

BlueSeis-3A,
FOSREM, ROMY,

Rotaphone-CY,
FARO, PHINS,

Quadrans,
MEMS

gyroscopes
(Horizon,
Gladiator)

~0.05

~0.5
(BlueSeis-3A)
~1 (FOS5-01)

~0.5 (FOS5-02)
<0.5 *

(BlueSeis-3A)
~0.005 * (ROMY)
<0.02 * (FARO)
<0.025 * (FOS5)

~0.025 * (PHINS)
<0.025 *

(Quadrans)
<0.05 *

(Rotaphone)

<0.1 *
(BlueSeis-3A)

<0.15 * (PHINS)
< 0.1 * (Quadrans)

<0.09 *
(Rotaphone)

~0.1–0.15
(BlueSeis-3A)

<0.15 (PHINS)
<0.15

(Rotaphone)
<0.15 *

(BlueSeis-3A)
~0.15 * (PHINS)

<0.15 *
(Quadrans)

<0.15 *
(Rotaphone)

VibroSeis truck,
Fürstenfeldbruck,

Germany
FOS5-1

0.096 0.0177

- -

0.105 0.0252

0.113 0.0386

0.121 0.0158

0.130 0.0156

0.138 0.0141

2021 Cao et al. [146] near field explosion, China RotSensor3C 0.150 ~11 ~11 ~16

2022
Brokešová and Málek

[147]

medium-size blast at the
Klecany quarry, Czech

Republic

Rotaphone, R-1,
ADR (array-

derived-rotation)
0.240

~0.05
(Rotaphone)
~0.01 (R-1)

~0.05 (ADR)

~0.25(Rotaphone)
~0.1 (R-1)

~0.25 (ADR)

~0.15
(Rotaphone)
~0.03 (R-1)
~0.1 (ADR)

~0.05
(Rotaphone)
~0.03 (R-1)

~0.06 (ADR)

~0.25
(Rotaphone)

~0.2 (R-1)
~0.22 (ADR)

~0.2 (Rotaphone)
~0.08 (R-1)
~0.1 (ADR)

* 30 Hz low pass filtered waveforms.
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Figure 9. Rotational seismometer METR-03 [148] used in the experiment presented in [142].

The prepared line where the shots took place was 100 m with 5 m spacing between
shots. It caused a P-wave with a velocity of 1420 m/s and two surface waves propagating
at velocities 135 m/s and 250 m/s recorded by a geophone distance of about 1 km. The
recorded signal around the Y-component (max. 0.2 mrad/s) of rotation was higher than the
maximum amplitude of the signal around the X-component, which the authors expected
according to the rotational deformation caused by the Rayleigh wave in the analysed survey
(poor rotation around the inline axis).

A team from the Military University of Technology, Poland, also studied the artificial
rotational events. The authors’ team has been working on the rotational sensor since
1998. The fibre-optic system for rotational events and phenomena monitoring (FOSREM)
belongs to the optical group of rotational sensors. It applies the technical realization of the
interferometer based on the Sagnac effect. It is performed according to a minimum open-
loop fibre-optic gyroscope configuration, where the Sagnac effect produces a phase shift
between two counter-propagating light beams proportional to the measured rotation [149].
The main advantage of this approach is its insensitivity to linear motions and the direct
measurement of the rotation rate. The deeper description of FOSREM’s configuration and
software can be found in [75,150–152]. The theoretical sensitivity of FOSREM is at the
level of 20 nrad/s/

√
Hz. The experimentally obtained Angle Random Walk (ARW) is

equal to 32 and 49 nrad/s for FOSREM-1 and FOSREM-2, respectively [75]. The thermal
stability of FOSREM has been experimentally verified at the temperature range from 0 ◦C
to 50 ◦C during the cooling and heating process, and it is presented in [150] with only
a 0.06%/◦C output signal instability. The basic parameters of the constructed rotational
systems at the Military University of Technology, Poland are presented in Table 6. The main
limitation of the above solutions is connected with applying the standard single-mode
optical fibre—SMF-28, Corning, Arizona, USA. Such an approach limited the general cost
of devices using even 15,000 m optical fibre in one sensor coil. However, SMF-28 is sensitive
to temperature and pressure fluctuation, which generates drift in the output signal. For the
above reason, all FOSREMs should be calibrated after their installation. The calibration is
made remotely via the internet; the recorded seismogram has automatically removed the
constant component of the signal by suitable software [153,154].

Two FOSREMs have been mounted together with TAPSs (Twin Antiparallel Pendulum
Seismometers) in the geophysical observatory of the Polish Academy of Science in Książ,
Poland, which is in the area of mining activity. TAPS was the first of the mechanical
rotational seismometers constructed in Poland. It was designed by the modification of
horizontal electromechanical SM-3 seismometers [155]. It includes two SM-3 seismometers
located anti-parallel on a common vertical axis [155]. It allows for the measurement of
the horizontal component of the linear velocity of the axis of the seismometer system,
perpendicular to the lever of the seismometers, and on its basis, determines the rotation
velocity relative to this axis. It is a Polish example of a rotational sensor that indirectly
determines the angular velocity similar to, e.g., a Rotaphone consisting of commercially
available geophones installed horizontally or vertically on a joint rigid base. In the spring
and early summer of 2018, two FOSREMs and TAPSs recorded rotational events induced
by digging two vertical shafts leading underground using numerous multiple bursts. The
microshocks were generated by real dynamite explosions aimed at creating tourist tunnels
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leading to Książ castle, Poland. It should be underlined that these works generated robust
oscillations with the peak velocities of the ground motions greater than usually encountered
(mainly of copper and coal mining provenance). The distance between the centre of the
shafts and rotational seismometer locations was around 75 m.

Table 6. Historical brief of the fibre-optic seismograph constructed at the Military University of
Technology, Poland; Legend: Y—year of construction, R—radius of the sensor loop, L—length of
the optical fibre, T—type of optical fibre, S—sensitivity, Ωmax—maximal detectable rotation velocity,
F—frequency.

Sensor Y R [m] L [m] T S [rad/s] Ωmax [rad/s] F [Hz] FOG Conf.

GS-13P
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Maximum velocities of the vertical rotation component observed during 16 multiple
blasts were much higher than those recorded during mining activity and were in the
range of 0.08–35 and 0.01–0.45 mrad/s recorded by FOSREM and TAPS, respectively [143].
Despite the different kinds of rotational sensors, the data from TAPS and FOSREM agreed,
which is broadly presented in [75,143]. Figure 10 presents examples of recorded blast-
induced angular motions by FOSREM-01 and -02.
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Figure 10. Examples of data recorded during microshocks by FOSREM-1 and -2 in Książ, Poland
with an absolute maximum signal amplitude equal to: (a) 3.41 mrad/s (FOSREM-1), 3.13 mrad/s
(FOSREM-2); (b) 0.0081 mrad/s (FOSREM-1), 0.0075 mrad/s (FOSREM-2); (c) 0.022 marad/s
(FOSREM-1), 0.021 mrad/s (FOSREM-2); (d) 0.02 mrad/s (FOSREM-1), 0.017 mrad/s (FOSREM-2).

Another comparative active experiment has been presented in [147], with data ob-
tained from three methods. The Rotaphone sensor system, the commercial R-1 rotational
sensor by Eentec, and a small-aperture array of twelve standard short-period LE-3Dlite ve-
locigraphs by Lennartz Electronic Ltd. (Tubingen, Germany) in a rectangular arrangement
have been recording rotation rates generated by a medium-sized quarry blast near Prague,
Czech Republic. The three methods used resulted in rotational records that matched only
partially; some were only approximately like others. The rotational component from a
medium-sized quarry blast at a distance of approximately 240 m reached an amplitude of
the order of 10−5 and 10−4 rad/s for the vertical and horizontal axes, respectively. Gener-
ally, the rotation component around the Y-axis and X-axis were approximately two times
and three times, respectively, stronger in amplitude compared to the rotation rate around
the Z-axis.

A broader and worldwide experiment is presented in [32]. “Rotation and strain in
Seismology: A comparative Sensor Test” gathered more than 40 sensors in the Geophysical
Observatory Fürstenfeldbruck, Germany, from 18–22 November 2019. The number and
diversity of the rotational sensors made this scientific event the first of its kind. The
blueSeis-3A, ROMY, three permanent broadband stations, 80 Channels Geophone system,
four Rotaphones, two Gladiator, three Horizon, four Quadrans, one Octans and several
accelerometers, giant FOG, giant FOG FARO, Distributed Acoustic Sensing cable, as well
as FOSREMs (two type FOS3 and two type FOS5), were mounted in the bunker and in
the field in order to record self-noise vibrations generated by artificial explosions within
distances range of 50 m to 1.1 km from the instrument installations, as well as vibration
generated by a special VibroSeis truck (peak force: 275 kN) placed within a distance
range of 20 m to 1.5 km to the instrument installations (Figure 11b). One of the most
important conclusions of these studies, which would seem obvious, is the reservation
that the devices must have precise amplitude and phase information across the entire
waveform. Manufacturers must pay special attention to this shortcoming due to inaccurate
timestamp strategies or improper decimal filtering. The obtained self-noise for all portable
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sensors indicated that FARO (a one-component prototype based on the principle of an
open-loop interferometric fibre-optic gyroscope [160]) is the most sensitive. Nevertheless,
considering its portability and size, it is only suitable for laboratory use or permanent
installation. The blueSeis-3A and Rotaphone-CY (in a narrow frequency band from 1 Hz
to 20 Hz) were characterized by the lowest self-noise, and in comparison to FARO, they
are portable. For the data presented in [32] concerning recorded during explosions, the
maximum amplitude of rotation recorded by all applied sensors did not exceed 100 µrad/s
for horizontal components and 500 µrad/s for vertical components.
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Figure 11. “Rotation and strain in Seismology: A comparative Sensor Test“, which took place in
Geophysical Observatory Fürstenfeldbruck, Germany: (a) the gathered rotational sensors in the
bunker, (b) view of the test field during sensors installation, and (c) the data recorded by FOSREMs
(type FOS5-01,-02) on the 19 November 2019.

One of the phases of the experiment involved registering external excitations generated
by the VibroSeis truck. The truck with a specific mass is designed to generate complete
sine waves. This truck was active for 15 s, generating waves with a frequency sweep
ranging from approximately 7 Hz to 120 Hz. During the experiment, the truck stopped
six times every 1–2 min to generate excitations. The distance between successive sweeps
was 10 m, and the distance between the FOS5 and the operation of the VibroSeis truck
ranged from 96 to 138 m. Analysing Table 5, it can be seen that changing the distance
of FOS5 from the VibroSeis truck did not affect the maximum amplitude of the recorded
signal [144,145]. Such cooperative experiments maintain that all instruments under the test
should be subjected to this identical excitation. Therefore, the place of the installation must
be carefully selected and characterized. This kind of international cooperation emphasizes
the need for standard sensor comparison and analysis to expand rotational seismology
knowledge and test new ways to process data by revealing the characteristics of the wave
field and source, as well as the location of the source.

The review [95] shows that a fibre-optic gyroscope-based system is arguably the
most successful fibre sensor technology today for rotational seismology. This technolog-
ical solution is utilized to construct one of the rotational sensors by the company Exial
(previously iXblue). BlueSeis-3A has been applied to record, inter alai, a volcano-related
earthquake [81] or explosion [32]. Another example of the application of this technology is
RotSensor3C, constructed by a team in China [146]. It recorded data during the explosion
with a maximum signal amplitude of 0.016 rad/s around the Y-axis. The comparison of the
main characteristics of RotSensor3C, the BlueSeis3A, and R-2 can be found in [146].

The Rotaphone, mentioned earlier, is widely used in rotational seismology. It was
constructed by the Charles University team, Czech Republic, led by Johana Brokešová.
It is a system consisting of commercially available geophones installed horizontally or
vertically on a joint rigid base. Its design enables the measurement of both linear and
rotational vibrations. The various types of Rotaphones and their parameters are presented
in Table 7. The first prototype, constructed in 2008 and named 3DOF, consisted of six
vertical geophones LF-24 (Sensor Nederland B.V., Voorschoten, Holland) mounted on a
massive metal disc 0.25 m in diameter at regular intervals. This device recorded rotational
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and translational seismic components induced by small seismic events in the swarm area
in the West Bohemia/Vogtland region (station Květná) [103].

The next type of Rotaphone, named 6DOF, consisted of eight horizontal and one
vertical SM-6 geophones (Sensor Nederland B.V., Voorschoten, Holland) mounted onto
a cubic-shaped metal frame and equipped with a modern analogue-to-digital converter.
This version of the sensor is characterized by a much lower minimum measurable angular
velocity of the order of 2.16 nrad/s [161]. The upgraded version of 6DOF, named ’Prototype
II’, possessed three additional vertical geophones.

Table 7. Parameters of the mechanical rotational sensors constructed by Institute of Geophysics of Polish
Academy of Science, Poland (TAPS), and by the Charles University team, Czech Republic (Rotaphone).

Device

TAPS [155] 3DOF [162] 6DOF [162] D [163] CY [163]
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data from several pairs of devices. This allows for their precise calibration and increases 
the system’s signal-to-noise ratio so the angular velocity can be defined with higher ac-
curacy. The latest version is named Rotaphone-CY, where a new model of an A/D con-
verter and a more precise placement of the geophones to parallel pairs have been applied. 
Moreover, better housing has been adapted to protect the device from external electro-
magnetic noise. Four Rotaphone-CYs participated in the “Rotation and strain in Seis-
mology: A comparative Sensor Test” experiment at Geophysical Observatory Fürsten-
feldbruck, Germany [32,163]. There was a series of explosions; the recordings of the 
Rotaphones have been analysed in [163], and some brief presentations of the record pa-
rameters are shown in Table 8. 
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Year of construction 1998 2008 2012 2015 2019

Sensitivity [nrad/s] 100 16.7 2.16 3.77 0.042

Max. detectable rotation
[mrad/s] 100 10 287 31.7 31.68

Dynamic range [dB] 120 100 120 120 120

Frequency range [Hz] 0.7–50 1–100 2–60 2–80 1–100

Sampling rate 100 250 250 250 250

Sensors: [quantity × type]
Eigen frequency

2 × SM-3

45

8 × LF-24

1

9 (prototype I);
12 (prototype II)

× SM-6
4.5

16 × SM-6

4.5

12 × SM-6

4.5

Spacing of paired sensors
[m] 0.28 0.3 0.3 0.4 0.3

Operating temperature
[◦C] −10–+45 −20–+40 −20–+40 −20–+100 −40–+70

Weight [kg] 15 4.5 9.5 15.3 22

Dimensions [length ×
width × height] [mm] 450 × 180 × 350 250 * × 10 350 × 350 × 430 445 * × 112 550 * × 500

* disc diameter.

The 3DOF and 6DOF (Prototype I and II) sensors have been successfully recording
several rotational effects with totally different seismotectonic characteristics in the period
2008–2013 in various regions: Czech Republic (West Bohemia/Vogtland, the vicinity of
Prague, the Hronov-Poříčí fault zone), the Provadia region in Bulgaria, the Gulf of Corinth,
Greece, and the volcanic complex of Eyafjalla and Katla in South Iceland. Subsequently,
the designers of the 6DOF system used the previous substrate and mounted 16 SM-6
geophones around the disc (eight horizontally and eight vertically), separating each pair
of geophones at a distance of 0.4 m. This design was named Rotaphone-D [162]. Thanks
to sixteen geophones, the angular velocity components are determined using data from
several pairs of devices. This allows for their precise calibration and increases the system’s
signal-to-noise ratio so the angular velocity can be defined with higher accuracy. The latest
version is named Rotaphone-CY, where a new model of an A/D converter and a more
precise placement of the geophones to parallel pairs have been applied. Moreover, better
housing has been adapted to protect the device from external electromagnetic noise. Four
Rotaphone-CYs participated in the “Rotation and strain in Seismology: A comparative
Sensor Test” experiment at Geophysical Observatory Fürstenfeldbruck, Germany [32,163].
There was a series of explosions; the recordings of the Rotaphones have been analysed
in [163], and some brief presentations of the record parameters are shown in Table 8.
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Table 8. Brief presentation of Rotaphone-CY record parameters obtained during explosions based
on [163]; Legend: A—amount of explosive, D—distance from Rotaphones, PGωz,x,y—maximum
absolute values of rotational components around the particular axis, PGVx,y,z—maximum absolute
values of translational components along the particular axis, F—prevailing frequency, calculated as
the instantaneous frequency of maximum rotation rate.

Event Parameters PGω [µrad/s] PGV [µm/s] F [Hz]

No. A [g] D [m] PGωz PGωx PGωy PGVz PGVx PGVy Z X Y

1. 150 220 2.4 2.6 3.0 22.9 16.3 15.2 15.8 11.7 12.6

2. 500 52 21.5 13.4 145.7 418.6 191.9 55.2 16 15.3 16.6

3. 1500 452 1.5 1.4 1.7 17.4 14 17.4 10.3 8.8 7.3

4. 1500 676 1.6 1 1.4 10.4 9.6 11.6 10.7 9.6 6.3

5. 1500 1020 0.8 1.1 0.8 5.2 6.4 11.4 9.4 10.1 6.8

7. Research Concerning Rotational Effects in the Mining Activity Region

In the rotational seismology field, several research studies concerning rotational effects
in the mining activity region can be found. The angular velocity of seismic vibrations
measured on the surface may significantly influence the impact on buildings with large
linear dimensions, e.g., high chimneys and bridges [164,165]. However, there has been no
systematic monitoring of seismic rotational vibrations in the near wave field induced by
mining exploitation. The reason for this was the lack of mobile intrinsically safe rotation
sensors that could be used in underground seismological networks and methane hazard
conditions. Rotational effects may significantly impact the stability of underground exca-
vation and the behaviour of roadway supports. Nowadays, more and more examples of
rotational events associated with mining activity are presented. Some of these are included
in Table 9.

Research on rotational effects associated with mining activity has been widely ex-
plored in Poland. Two areas of intensive mining in Poland can be distinguished: Upper
Silesian Coal Basin (USCB) [166], and Legnica–Głogów Copper District (LGCD) [167].
These areas served as convenient seismology and earthquake engineering test fields for
Zembaty et al. [5], Kurzych et al. [75], Fuławka et al. [77], and Jaroszewicz et al. [158].
Over 1000 seismic phenomena with magnitudes above 1.0 are recorded yearly in LGCD.
Some of them are strongly felt on the surface by local residents, resulting in rock bursts
and damage to the mine workings. Exploiting coal and copper deposits in the USCB and
LGCD leads to mining tremors, causing damage to buildings. The primary mechanism
of propagating seismic waves from the source to the surface is the same for earthquakes
and mining tremors. This leads some seismologists to conclude that apart from depth
and magnitude, there are no fundamental differences between earthquakes and mining
tremors [168]. However, from the point of view of surface effects, these are quantitative
and qualitative differences. The magnitudes of mining tremors rarely exceed 4 to 5, and
earthquakes significantly impact structures located near their epicentres, generally for
magnitudes above 5 to 6. A typical earthquake recording lasts 10–30 s (although there
are exceptions), while mining tremors typically last a few seconds. The most important
difference between mining tremors and earthquakes is differences in the spectral properties
of records. Most mining tremors in the LGCD area generate high-frequency and short
(1–2 s) acceleration waveforms on the ground surface. According to the latest reports,
surface ground rotation can be the result of various phenomena: the significant size of
the seismic focus in comparison to the hypocentre distance, hypothetical rotational waves,
reflections of body waves from the ground surface, and surface wave propagation.

In the paper by Zembaty et al. [5], one can find a collection of 51 records of ground
rotation from a surface measuring station located in the mining area of the Ziemowit coal
mine, which is situated in the USCB in Poland. The triaxial rotational sensor R-1 and
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translational ones by the EA-120 translation sensors have been used. The three strongest
events of the whole recorded series have been analysed in detail in [5]. The maximum
value of the recorded rotational velocity about the north–south axis equals 0.527 mrad/s,
and it corresponds to a maximum acceleration equal to 32.348 mrad/s2 for the event with a
magnitude of 2.6.

Table 9. Parameters of the recordings associated with mining activity; Legend: Y—year of publica-
tions, F—frequency range of the sensor used, VS—vibration source mechanism, Mw—magnitude,
R—distance between the event source and sensor, PGVh—peak value of horizontal ground velocity,
PGVv—peak value of vertical ground velocity, PGωz,x,y—peak value of rotational velocity around
the particular axis.

Y Ref. F [Hz] VS Sensor Mw
R

[km]
PGVh
[mm/s]

PGVv
[mm/s]

PGωz
[µrad/s]

PGωx
[µrad/s]

PGωy
[µrad/s]

2014
Kurzych et al.

[169] 0.83–106.15

mining activity, Lubin,
Poland, 2011–2013

AFORS
2.3–3.3 70

- -
6/60

- -
earthquake Honshu,

Japan, 2011 9 8800 15

2015
Brokešová and

Málek [47] 2–60

geodynamically active
region, West

Bohemia/Vogtland,
2012, (band-pass

filtered 2–24)

Rotaphone
6DOF

2 0.7 0.081 0.02 4 5.7 4

active rift, Gulf of
Corinth, Greece, 2012

(band-pass filtered 1–14)
2.4 6.3 0.326 0.06 10 15 25

Microearthquake, rifting
and volcanic activity in

South Iceland, 2014
(band-pass filtered 1–14)

2.3 14.9 0.05 0.025 3.3 1 2.5

2016
Zembaty et al.

[5] 0.05–20
mining exploration
monitoring, USCB,

Poland
R-1

2.6 0.943 20.3

-

491 513 527

2.5 1.203 8.3 514 425 298

2.2 0.973 13.8 430 276 500

2019 Kurzych et al.
[75] DC–328.12

seismic shocks induced
by the exploitation of

copper ore, Książ,
Poland, 2017–2018

FOSREM - 70 - - 1–20 - -

2020
Fuławka et al.

[77] 0.05–20

tremor in the near-wave
field, Rudna-I shaft,

Poland, 2019 R-1

- <7 0.01–4 0.01–4
few µrad/s up to 195 mrad/s *

monitoring of the tailing
pond, Poland, 2019 - 2.3–8 0.01–4 0.01–4

2021 Jaroszewicz
et al. [158] DC–1000

mining-induced events,
coalmine “Ignacy”,

Rybnik, Poland, 2021
FOSERM - - - -

51.8
(FOS5-01)

60.8
(FOS5-02)

- -

* depending on the distance from the mining tremor and its energy, peak ground rotational velocity is calculated
as PGRV, as described in Section 2.2.

Kurzych et al. [169], Fuławka et al. [77], and Jaroszewicz et al. [158] are focused on
the rotational events recordings in the LGCD. Fuławka et al. [77] applied R-1 and EP-
300 seismometers to record data connected with mining-induced seismicity. The authors
focused on two stations, which are the most interesting, considering seismic activity:
Zelazny Most—one the biggest flotation tailing ponds worldwide and the Rudna-I mining
shaft. Sensors were installed at the concrete base near the Rudna-I shaft and in a two-m-deep
concrete well located at the dam of the Zelazny Most tailing pond, Poland. High-energy
events (E > 106 J) were analysed and located below 8 km from measuring posts. The
maximum value of the peak ground rotational velocity, equalling 0.46 mrad/s, in the first
station, was generated by a high-energy seismic tremor with energy equal to 3.1·108 J at a
distance of 4.446 km from the source. According to the waveforms recorded near Rudna-I,
high-energy tremors that occur below 2 km in nearly all cases were related to rotational
velocity over one mrad/s. The maximum rotational velocity of the seismic wave reached
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the value of 195 mrad/s and was caused by a seismic tremor with the energy of 3.6·107 J
located at a distance of 1.550 km from the measuring post. According to the distance from
the mining shock and its energy, the recorded rotational velocity varies in the range from
several µrad/s to 190 mrad/s, which is five times higher than in the case of measurements
of the rotation generated by blasting 1 kT of explosive in underground conditions from a
distance of 1 km [82]. Studies conducted in various location fields [5] confirmed a strong
correlation between the logarithm of the peak ground rotational velocity and peak ground
translational acceleration. However, these studies [77] have shown that this relationship is
not present at very small distances, less than 2 km hypocentrically and 500 m epicentrically,
where the rotational velocity has no relationship to the translational acceleration. A higher
dominant frequency and attenuation also characterize the rotational component of the
ground motion wave compared to the translational component. Therefore, monitoring and
analysing these seismic movements is important, especially in the near field where the
expected rotational speed can be high.

Kurzych et al. [169] presented regional seismic mining events of a magnitude range of
2.3–3.3, which occurred in the Lubin area, Poland, with the maximum rotational velocity
amplitude reaching 60 µrad/s recorded by AFORS-1. In the period of 12 January 2017–
18 January 2018, two FOSREMs recorded two types of signals around the Z-axis—torsion
and tilt, in the frequency range DC–10.25 Hz [75]. Systems were mounted in the geophysical
observatory of the Polish Academy of Science in Książ, Poland. The recorded events were
associated with mining activity in this region, where the phenomenon of mining shock
is most often associated with rock mass cracking, as well as its collapse or displacement
along fault surfaces, making it a source of shock waves. The examples of the recordings are
presented in Figure 12.
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to 10.25 Hz detected by FOSREM-1/-2 from 12/01/2017 to 18/01/2018 at Książ observatory, Poland.

The tilt was one-directional rotational and caused by a rock mass shock, resulting in an
excavation or its part being suddenly destroyed or damaged. The average value of the signal
maximum amplitude for sixteen recordings for the tilt phenomenon (61.025 ± 0.097 µrad/s)
is definitely higher by approximately one order of magnitude than for the recorded rota-
tional events in the form of torsional motion (61.000 ± 0.009 µrad/s)—see Table 10. This is
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due to the greater rapidity of the tilt phenomenon, the source of which is most likely the
method of exploitation, so-called collapse, generating unexpected violent landslides.

Table 10. List of parameters of exemplary rotational events recorded by FOSREM-1 and -2 in the
period 12 January 2017–25 January 2018 associated with mining activity.

Torsion Tilt

FOSREM-1/-2 Date Event Start
Max. Signal
Amplitude

[µrad/s]
Date Event Start

Max. Signal
Amplitude

[µrad/s]

FOSREM-1/-2 8 January 2018 08:09:50 3.89/1.81 22 September 2017 06:54:07 102/101

FOSREM-1/-2 14 December 2017 08:11:48 5.45/2.84 12 December 2017 08:54:27 22.8/15.3

FOSREM-1/-2 28 November 2017 09:16:24 19.9/10.1 25 January 2018 09:44:47 52.1/42.0

FOSREM-1/-2 25 January 2018 09:40:05 4.93/2.97 3 February 2018 10:14:23 240/219

FOSREM-1/-2 1 December 2017 10:04:21 8.25/4.17 1 January 2018 10:48:39 101/117

FOSREM-1/-2 1 December 2017 10:05:55 16.7/10.3 14 December 2017 10:51:04 27.4/46.5

FOSREM-1/-2 28 November 2017 10:36:11 1.86/1.61 29 August 2017 11:02:53 36.6/22.0

FOSREM-1/-2 28 November 2017 10:36:54 1.58/ 1.01 6 December 2017 11:04:58 17.3/12.0

FOSREM-1/-2 14 December 2017 10:56:31 1.95/ 1.27 13 December 2017 11:15:56 2.53/2.79

FOSREM-1/-2 6 December 2017 10:59:29 5.34/3.24 8 December 2017 13:01:23 96.1/77.5

FOSREM-1/-2 5 October 2017 11:26:39 20.0/10.0 13 December 2017 17:11:46 35.5/29.0

FOSREM-1/-2 11 December 2017 13:49:25 9.83/5.15 13 December 2017 18:01:32 35.6/77.1

FOSREM-1/-2 13 December 2017 14:51:07 1.65/1.32 13 December 2017 18:06:43 34.7/62.0

FOSREM-1/-2 20 October 2017 16:33:43 7.34/6.28 13 December 2017 18:07:11 58.1/85.6

FOSREM-1/-2 13 December 2017 17:01:38 31.5/15.5 13 December 2017 18:11:45 55.3/97.8

FOSREM-1/-2 13 December 2017 18:25:56 1.77/1.09 13 December 2017 19:16:13 1.67/1.99

8. Engineering Area of Rotational Seismology

Recent research [170–173] shows that the contribution of the rotational component of
vibrations is significant when calculating forces in tall and slender objects, e.g., free-standing
chimneys. Such vibrations may be undesirable and harmful to certain building structures,
even if these are rotational speeds of the order of milliradians per second. Calculations
carried out by Bońkowski et al. [165] using data from the seismological archive of the
Upper Silesian Regional Seismological Network of the Central Mining Institute, Poland,
showed that for a high chimney, the influence of the rotational component in the entire
bending moment response ranged from 18% in the upper part of the object to 65% in the
chimney base.

The work [174] analysed the behaviour of the Military University of Technology
building, Warsaw, Poland, built in the 1960s. Its structure is a reinforced concrete frame
with reinforced concrete beams and ceiling slabs supported by beams. The external walls
are filled with a reinforced concrete frame structure using silicate bricks with plaster on
both sides. The analysed building was approximately 123 m from a single-carriageway road
with railway tracks. The FOSREM sensor was installed on each building floor, and a series
of angular velocity measurements were gathered around a vertical axis. The collected data
were processed, and the most minor noisy signals from the night were selected. The tests
showed that the vibration signal amplitude decreases as the building height increases. The
building construction attenuates vibrations on the upper floors (58.4 µrad/s—ground floor;
56.1 µrad/s—1st floor; 58.1 µrad/s—2nd floor) but only up to the third floor (59.4 µrad/s),
where the amplitude begins to increase [174]. This is probably because, at the highest
level, the structure of the building does not stabilize its operation at this level. The highest
maximal angular velocity value was recorded in the basement, equalling 64.5 µrad/s. It
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is not easy to clearly point out the source of vibration, i.e., mechanical devices, traffic
vibrations, construction works, or environmental conditions.

The analysis of the amplitudes of translation accelerations and rotation rates along
with their variations over time at the top and bottom of the Grenoble city hall, France, is
presented in [175]. Apart from permanent accelerometric translation sensors, the BlueSeis-
3A rotation sensor has been installed at the top of the building to analyse the influence of
ambient vibrations. Under ambient vibrations, a large ratio is observed at the ground level
between acceleration and rotation compared with even moderate earthquake conditions.
The presented example of 10 min recordings of rotation under ambient vibrations reaches
the absolute maximal value of angular velocity equal to 5 µrad/s, while at the time of the
local storm, it is equal to 0.1 mrad/s.

In [176], the authors investigated the application of rotation rate sensors in vibration-
based damage detection in a laboratory environment. The cantilever plexiglass beam under
kinematic excitations was investigated theoretically and experimentally. The differences
in the response recorded by Horizon (HZ1-100–100) between intact and damaged beams
were seen. The authors proved that rotation rate sensors can be effectively calibrated to
monitor even slight variations of the flexural stiffness of beams by using the sensors located
on beams or frames.

The authors of [177] investigate the effects of ground rotation on engineering structures
using a numerical model of the Grand Chancellor Hotel in Christchurch, New Zealand,
which was severely damaged during an earthquake. The importance of ground rotational
motion on the coherent translational motion of buildings was investigated, taking inter-
story drift as an indicator of structural damage. The results indicate an increase in inter-story
drift by up to 15% when considering the rotational component of ground motion. According
to damage observations, rotations appear essential for tall buildings in the earthquake
area. The effects of rotational motions on structures should be further investigated to avoid
underestimating drifts.

9. Discussion

As seismology is an observational science, high-quality data are crucial. Therefore, it
is essential to develop two classes of instruments: for observations using teleseismometers
and for use in dense seismic networks. In seismology, it is observed that the entire seismic
network is a measuring device, not a single sensor, and the measurements aim not at
ground movements but at the parameters of the earthquake source. Despite continuous
development, rotational seismology now allows for observing the rotational movements
of the Earth’s surface, which provides valuable information. In the case of observations
at teleseismic distances, the seismic wave field can be approximated by plane waves,
which significantly facilitates the analysis. While large ring lasers and seismic arrays are
expensive, even single sensors can provide essential data. In the near field, on the other
hand, it is necessary to collect large amounts of data to draw reliable conclusions. Here, the
amplitudes of rotational movements are higher, allowing networks to be constructed based
on inexpensive sensors. Seismic networks should be deployed in earthquake-prone areas
to ensure the comprehensive monitoring of potential hazards. It is also crucial to cover the
nearest seismic field with observations.

The development of rotational seismology remains an area of intense research, gener-
ating more questions than answers. The future of this field will depend on effective data
collection, improvement of measurement instruments and methods, and the development
of the theory of rotational motions. Despite larger and larger amounts of data and papers,
there are still several questions to be solved, i.e., the way to store rotational energy, the fault
zone, the relationship between rotational elasticity and normal elasticity, the nature of the
dynamic breakdown of granular media, the existence of rotational creep, laws governing
the damping of rotational force.

Combining the translational and rotational components in interpreting a seismic sig-
nal is vital for many reasons. Firstly, it helps improve the signal-to-noise ratio in seismic
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observations. Secondly, it improves the quality of linear displacement seismic records by
correcting the instrument’s response to rotational motions. Additionally, the joint consider-
ation of the translational and rotational components helps to unambiguously determine
the location of the fault plane within the source when examining source properties and
media structure and increases the capabilities of seismic tomography. In the context of the
analysis of rotational movements in seismic zones, it is necessary to study their distribution
and values, as this impacts the assessment of the behaviour of buildings during earth-
quakes and the study of the influence of soil properties and nonlinear effects. Research
on building structures using rotational motion sensors reveals their critical sensitivity
to such movements and determines rotational motion modes and resonance frequencies.
Rotational data analysis is also used in volcanology. The recorded vertical component of
rotational movement provides additional observations of Earth’s free toroidal oscillations
that are difficult to detect with standard sensors, and rotation sensors are used to correct
the readings of precision instruments sensitive to rotational motions, as well as to search for
gravitational waves. In seismic surveys, the use of rotational sensors increases the ability
to separate the P- and S-waves and detect the arrival of the surface wave with high accu-
racy. Finally, rotational seismic sensors have great potential for the remote monitoring of
underground drilling equipment, which can be important in mining activities. Taking into
consideration all the above-discussed issues, one needs to underline the interdisciplinary
character of rotational seismology, which touches both seismological aspects associated
with earthquakes as well as structural health monitoring. Moreover, machine learning
applications for rotational seismology should be also involved, which can be excellent for
earthquake catalogues, parameter analyses, and ground motion predictions.
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