

Review of achievements and recording perspectives of rotational seismology

Anna T. Kurzych, Leszek R. Jaroszewicz Institute of Applied Physics, Military University of Technology, 2 gen. S. Kaliskiego Str., Warsaw, Poland PL-00-908 Elproma Electronics Ltd., 2A Duńska Str., Czosnów, Poland PL-05-152

GELPROMA

A view shows damage at an old mosque in the historic city of Marrakech, following a powerful earthquake in Morocco, September 9, 2023 [https://edition.cnn.com/2023/09/10/africa/mo sque-earthquake-damage-marrakechintl/index.html]

Building damanged by the February 2011 earthquake in Christchurch, New Zealand. [https://www.usgs.gov/media/images/earthqu ake-damaged-building]

ROTATIONAL

Seismological application

broadband seismology [Igel et al., Geophys. J. Int., 168(1), (2006), 182–197], strong-motion seismology [Anderson, 2003, Chap. 57, 937-965], earthquake physics [Teisseyre et al. Springer, 2006; Springer, 2008], seismic hazards [McGuire, Earthq. Eng. Struct. D., 37, (2008), 329–338], seismotectonics [www.geophysik.uni-uenchen.de/~igel/Lectures/Sedi/sedi_te ctonics.ppt], geodesy [Carey, Expanding Earth Symposium, (1983), 365-372], physicists using Earth-based observatories for detecting gravitational waves [Ju et al., Rep. Prog. Phys., 63, (2000), 1317–1427; Lantz et al., BSSA, 99, (2009), 980-989]

2006

The International Working Group on Rotational Seismology (IWGoRS, www.rotational-seismology.org) was initiated during a meeting organized by the United States Geological Survey in Menlo Park

SEISMOLOGY

2009

RS - a new, emerging field for the study of all aspects of rotational ground motion induced by earthquakes, explosions, and ambient vibrations [Lee et al. BSSA, 2009, 99, 945-957]

Engineering application

seismic behaviour of irregular and complex civil structures [Trifunac, BSSA, 99, (2009), 968-97; Mustafa, InTech, 2015]

Seismological application

Energy generated during an earthquake propagates not only in a form of linear motions but also in rotational ones.

Earthquakes are undoubtedly one of the most complex phenomena and it is hard to entirely reflect their complexity in theoretical models

Map of the sites of observation of rotational effects and examples of rotationsafter 2009 L'Aquila earthquake [Cucci, L. & Tertulliani, A.. (2011), BSSA, 101, 1109-1120]

Engineering application

Local vibration of beams

Meaningless motion of the building center of mass

q·m 0(t) A

Snapshot of the model of displacement response to an incident plane P-wave half sine displacement pulse with 45° incident angle (view from South) [Todorovska M. I., WCEE2024 Processing, 2024]

A slender structure under horizontal-rocking ground vibrations [Bońkowski et al., Engineering Structures 155, 387-393, 2018]

[Castellani, Guidotti, 2nd Workshop of IWGoRS Masaryk's College Prague, (2010)]

Classification of rotation measurements

Strong-motion of the order of tens of µrad/s and more

- Rotational motions of the ground in the near-source field
- Rotation associated with volcanic eruptions
- Rotation recorded during chemical explosions
- Rotation connected with engineering seismology

The frequency range can reach 10⁻⁴ Hz to 100 Hz;

Rotation with a very low amplitude of the order of tens of 10⁻⁷ rad/s or less

- Rotation measurements of teleseismic waves
- Measurements of rotation related to the physics of seismological interactions
- Rotation studies in a micromorphic medium

Indirect rotation research by numerical conversion

	Ref.	Freq. [Hz]	ES	M_w	R [km]	PGV _h [m/s]	PGV _v [m/s]	PGω _z * [µrad]	PGω _z [mrad/s]	PGω _x * [µrad]	PGω _x [mrad/s]	PGω _y * [µrad]	PGω _y [mrad/s]	Bouchon a wavenum
1982	Bouchon & Aki		strike-slip fault	6.6	1	1/1.6	-	200/ 300	1.2/1.5	700		-		Huang pre
2003	Huang	<1.0	The 1999 Chi-Chi, Taiwan earthquake (thrust fault)	7.6	6	0.33	0.50	171	0.385	44	0.126	177	0.331	from tran numerica
			2004 Parkfield, California,	6.0	8.8	0.25		88.1	1.09	68.9	0.925	-		from a de
2008	Spudich & Fletcher	< 3.6	earthquake and aftershocks(strike-slip	4.7 5.1	14.0 14.4	0.012	-	4.69 20	0.0944	4.74 0.177	0.0926		-	
			fault)	4.9	14.4	0.000		13.6	0.247	9.73	0.372		Spudich 8	
2009	Stupazzini, et al.	<2	valley of Grenoble, French (strike-slip)	6.0	0.02 - 0.90	3315	-	1 690	8.24	1.31	8.66	-	-	of the rota 2004, mai
2009	Wang, et al.	<0.5	Newport-Inglewood strike-slip	7.0	<80	-	-	-	3.00*		0.350*	-	0.6*	Stupazzin
			hypothetical strike-slip earthquake	6 6.4 7.2 7.6	1-50	<0.72	<0.24	69.2- <mark>194.2</mark>		16.9 -94.3	-	22.7-98.5	-	wave field Wang et a difference
2019	Cao & Mavroeidis	dip-slip earthquake	6 6.4 6.8 7.2 7.6	1-50	<0.66	<0.93	54.1-144.3		117.9 -421.9	-	144.2-325.3	3 -	of up to 0. the variab significant speed.	
			Izmit earthquake 1999	7.5	1-50	0.11-0.63*	0.03-0.19*	52.6-155*		6.2-43.3*		10.7-47.4*		Cao and I
2021	Cao & Mavroeidis	< 1.0	2004 Parkfield	6.0	1-50	0.005-0.23*	0.003-0.045*	5.6-35.5*	-	2.5-23.1*	- 1	1.4-30.7*	<u> </u>	translatio
			1979 Imperial Valley	6.5	1-50	0.06-0.83*	0.007-0.13*	21-178*		9.7-89*		3.9-29.8*		closely sp

Bouchon and Aki used the discrete wavenumber representation method

Huang presented calculated rotations from translational velocities by numerically integrating accelerograms from a dense acceleration system

Spudich & Fletcher provides an estimate of the rotation of the September 28, 2004, mainshock in Parkfield, California

Stupazzini et al. simulated the rotational wave field 3D numerical modeling

Wang et al. simulated using a finitedifference method over a frequency range of up to 0.5 Hz. The analysis showed that the variability of the hypocenter leads to significant changes in the ground rotation speed.

Cao and Mavroeidis finite differential translational motions generated at very closely spaced stations

Parameters of the rotation (selected maximum value) obtained indirectly by numerical analysis. Legend: Y – year of publication, Ref. – reference, ES – earthquake source mechanism, M_w - magnitude, R – epicentral distance, PGV_h – peak value of horizontal ground velocity, PGV_v – peak value of vertical ground velocity, PGW_v – peak value of rotational velocity around the particular axis.

* $PG_{\omega_{ZX,Y}}$ – ground rotation around the particular axis depending on the distance

Rotation effects recordings during natural earthquakes

Y	Ref.	ES	Sensor	M_{w}	R [km]	PGV _h [mm/s]	PGV _v [mm/s]	PGω _z [mrad/s]	PGω _x [mrad/s]	PGω _y [mrad/s]	0010000 1.00000 901 00 10000 911 0000 911 0000 911 0000 911 0000
			Systron	5.7	3.3	290	500	3.3	26	5.9	0.01000
998,	Takeo	strike-slip fault, 1997	Donner								
006	Takeo	suike-silp laut, 1997	triaxial gyro	5.3	3.3	200	100	8.1	27	30	
			sensor								000010
			Systron	5.0	5.6	100	60	3	6	8	
09	Takeo	seismic swarm activities at	Donner	3.6	5.9	6	2	0.2	1	1	
	1000	offshore Ito, Japan, 1998	triaxial gyro sensor	2.4	4.9	6	0.3	0.03	0.2	0.2	Epicentral distance (km) Takeo – 3-axial Gyro (Systron Donner)
		local earthquakes at the HGSD		5.1	51	-	-	0.63	~ 0.4	~0.3	
09	Liu et al.	station in eastern Taiwan	R-1	2.5-6.63	14.3– 260.4	-	-	0.004-0.63	-	-	NO 0.6
10	Brokešová & Málek	earthquake swarm in Western Bohemia, 2008	Rotaphone 3DOF	2.2	4.4	400	-	0.15	-	-	L 2 0.5 · · · · · · · · · · · · · · · · · · ·
13	Brokešová & Málek	an earthquake recorded at the station Sergoula, Greece	6 DOF Rotaphone	4.3	5	4.5	9	~0.4	~0.8	~0.7	
16	Yin et al.	215 events at The Garner Valley Downhole Array is	R-1	3.0-7.2	14-207	-	-	0.006-0.453	-	0.004-0.7	2 0.0
		in California, 2008-2014	TAPS					0.005			Liu, Yin – R-1 (Eentec)
17	Jaroszewicz et al.	local earthquake, Jarocin, Poland	AFORS	3.8	200	-	-	0.005	-	-	☆ 700 • • Z-axis 700 • • Z-axis
		local earthquake	Two SMHD	4.2	0.5	22.1	11	1.12/0.85	-	2.11/1.86	Horizontal axis
8	Ringler et al.	local earthquake	(ATA)	2.8	≤220			~0.0005	$\sim \! 0.00025$	~0.00025	
		155 local earthquake	(AIA)	≥2.0	≤220	_	-	0.0002-2	0.0002-2	0.0002-2	
20	Wassermann et al.	volcano-tectonic earthquake	BlueSeis-3A	5.3	1.5	2	1	2.4	2.5	2.4	ad 100 - ad 1300
22	Wassermann et al.	Stromboli volcano, Italy activity	BlueSeis-3A	-	-	<0.01	<0.02	<0.0005	<0.001	<0.001	
											0 25 50 75 100 125 150 175 200 225 250 275 Epicentral distance [km]
h	store of the rot	ation recordings generated	by natural of	arthau	akos L	ogond. V	- the ver	vr of public	nation De	.t	Brokesova – 3DOF, 6DOF Rotaphone (Czech Republic) 🗼 🥻 🗍

Parameters of the rotation recordings generated by natural earthquakes. Legend: Y – the year of publication, Ref. – reference, ES – earthquake source, M_w - magnitude, R – epicentral distance, PGV_h – peak value of horizontal ground velocity, PGV_v – peak value of vertical ground velocity, $PGw_{zx,y}$ - peak value of rotational velocity about a particular axis

Teleseismic waves recordings

Y	Ref.	ES	Sensor	M_w	R [km]	$PGV_h[m/s]$	PGω _z [nrad/s]	PGω _x [nrad/s]	$PG\omega_y$ [nrad/s]	
2000	Pancha et al.	New Ireland earthquake, 1999	C-II, G0	7.0	$\sim \! 4700$		10 (C-II)	5 (G0)		
		Vanuatu earthquake, 1999	C-II	7.3	~3 500	_	8		_	
2005	Igel et al.	Thrust earthquake Japan	G-ring	8.1	~ 8830		~35	-		
2007	Igel et al.	from local event, Germany to Great Andaman earthquake	G-ring	5-9	370-12700	-	~0.10-40	-	-	
	Schreiber et	Earthquake Kamachatka, 2006	GEOsensor	7.6	~6 500	5 197	~10			
2009	al.	Earthquake Mexico, 2006	GLOSCHSON	5.4	~ 2000	4 646	~5	-	-	
	dI.	Earthquake California, 2007		3.6	~200	8 670	~16			
		Earthquake California, 2007		3.9	~250	14 512	~30			
2011	Lin et al.	Earthquake in Wenchuan Sichuan, China	R-1	7.9	1 948	<0.01	-	10 000	10 000	
2012	Belfi et al.	Earthquake in Japan, 2011	G-Pisa	9.0	-	-	~60	-	-	
	Ross et al.	earthquake Papua New Guinea, 2016		7.9		~150.10-6			~30*	
		earthquake Vanuatu, 2016		6.7		~6.10-6			$\sim 2^*$	
		earthquake New Caledonia, 2016	beam	7.2	-	~40.10-6			~10*	
2017		earthquake north of Ascension Island, 2016	rotation sensor BRS	7.1		~15.10-6	-		$\sim 4.5^*$	
		earthquake New Zealand, 2016		7.8		~200.10-6			~60*	
		earthquake of Panguna, Papua New Guinea, 2017		7.9		~150.10-6		~30*		
2018	Simonelli et al	Series of earthquakes in Italy, 2016	GINGERino	3.5–5.9	38-77	-	~600–17 000	-	-	
2020	Sollberger et al.	Earthquake Gulf of Alaska, 2018	ROMY	7.9	-	-	~6	~8	~ 4	
2021	Igel et al.	Papua New Guinea earthquake, 2019	ROMY	7.6	14 000	-	~8.5	~9	_	
2021	iger et al.	Turkey earthquake, 2019	ICOIVI I	5.7	1 500	-	~5	~9		
		Austria earthquake, 2018		3.8	144		~18.9	~ 18		

- strong earthquakes
- extremly distance R
- extremely low PGω (nrad/s) amplitude

GINGERino

Requirements

- Insensitivity to linear motion
- Mobility, stability with respect to environmental conditions, including changes of temperature
- Independent power supply
- Dynamic range 10⁻⁸ 10 rad/s
- Frequency band 0.01 100 Hz
- Power consumption 5 8 W
- Thermal stability <0,1% / oC
- Calibration in situ (permanently)

ROTATIONAL SEISMOGRAPH

network of seismometers + precise time source + recording device + network

Engineering application

signal amplitude: up to 10 rad/s, frequency: 0.01 Hz – 100 Hz

Seismological application

signal amplitude: from 10⁻⁷ rad/s, frequency: 0.01 Hz – 0.1 Hz

	3-axial GYRO	TAPS	3DOF	6DOF	D	CY	R-1	AFORS-1	BlueSeis-3A	DRIVE
Device	The second second			A A		B			100	
Year of construction	2008	1998	2010	2012	2015	2019	2006	2010	2015	
Sensitivity [nrad/s]	no data	100	16.7	2.16	3.77	0.042	1200	4	20	MEMS - vibrating tuning fork, vibrating-
$\Omega_{\text{Max.}}$ [mrad/s]	873	100	10	287	31.7	31.68	0.1	64.3	0.1	wheel, resonant wheel, hemispherical resonant, Foucault pendulum apply the
Dynamic range [dB]	no data	120	100	120	120	120	110	124	135	Coriolis force to detect the angular velocity
Frequency range [Hz]	DC - 75	0.7 – 50	1 – 100	2 – 60	2 – 80	1–100	0.05 - 20	0.83-106	DC - 100	ere erene erene erene erene e
Sampling rate	no data	100	250	250	250	250	N/A	212	up to 200	ectoshnical vertical velocity profiles T-T restorates engine
Sensors: [No. x type]	MEMS	2 x SM-3	8 x LF-24	9; 12 SM-6	16 x SM-6	12 x SM-6	fluid MET	optical	optical	R-1 (R-2) - no flat above 1 Hz, 80 dB instead declare 110 dB, 27% (R-1) and
Eigen frequency	no data	45	1	4.5	4.5	4.5	N/A	N/A	N/A	18% (R-2) signal deviation in temp. +20 - +50 C.
Spacing of sensors [m]	N/A	0.28	0.3	0.3	0.4	0.3	N/A	N/A	N/A	horizontal 7 geophene Cister (tipe Gitter 8 5 7 geophene
Operating temp. [^o C]	< 125	-10 – +45	-20 - +40	-20 - +40	-20 – +100	-40 - +70	-15 - +55	-10 - +50	-10 - +50	9 12 10 secolore
Weight [kg]	0.3	15	4.5	9.5	15.3	22	1.0	18	20	1 Vertus among new sectors and the sectors and
Dimensions [LxWxH] [cm]	no data	45x18x35	25 [*] x 1	35x30x43	44.5x12	55 [*] x50	12x12x9	70* x 16	30*x60	Rotaphone (3DOF, 6DOF, D) Ω is determined by more accurately as
* diameter										result of more than one geophone pair; frequency ranges are still too

AFORS-1 (uniaxial), BlueSiei-3A (triaxial) optical system based on (or uses) FOG – physically the Sagnac effect in fiber-optic loop interferometer, mass-free (non-inertial) system -> probably the best solution for rotational seismograph fulfill all RS requirements.

ne (3DOF, 6DOF, D) Ω is ned by more accurately as more than one geophone pair; frequency ranges are still too

BACKGROUND

The direct utilization of the Sagnac effect

Sagnac effect shows the difference between phase of two beams propagating around closed optical path, in opposite direction when this path is rotating with rotational rate Ω . In a fiber-optic implementation the rotation rate Ω is expressed by induced phase shift $\Delta \phi$ as:

$$\Omega = S_o \cdot \Delta \varphi = \frac{\lambda c}{4\pi RL} \cdot \Delta \varphi$$

- L length of the fiber in the sensor loop,
- R sensor loop radius,
- $\lambda~$ wavelength of used source,
- c velocity of the light in vacuum,
- S_0 the optical constant of interferometer

Fibre-Optic Seismograph

OPTICAL PART

generates the phase shift $\Delta \phi$ proportional to the measured rotation rate Ω which is perpendicular to the sensor loop plane

ELECTRONIC PART

enables to calculate and record information about rotational motions via digital closedloop signal processing

Laboratory analysis of FORS' parameters

Allan Variance analysis Theoretically

$$ARW = \frac{\sqrt{2}\lambda c}{2\pi DL} \sqrt{\frac{4kT}{R\eta^2 P^2} + \frac{ei_d}{\eta^2 P^2} + \frac{e}{\eta P} + \frac{\lambda^2}{4c\Delta\lambda}}$$

where: λ – central light wavelength (1 550 nm), *c* – speed of light, D – loop diameter (0.25 m), *L* – loop length (about 6 000 m), k – Boltzmann's constant, *T* – temperature (293 K), *R* – resistance of the trans-impedance transducer of the photodetector device (20 k Ω), η – efficiency ratio of the photodiode (0.85 A/W), *P* – incident optical power on the APD, *e* – elementary charge, *i*_d – photodiode dark current (80 nA), $\Delta\lambda$ – spectral width of the light source (40 nm).

The calculated theoretical values of ARW for each optical head for four FORS type FOS6 were in the range of **4.49-4.85** nrad/vs, depending on total optical losses and fiber length in the given optical head.

Allan Variance analysis

Data gathered in the Military University of Technology, Poland

FOS6-01: ARW: 35 nrad/Vs, BI: 10.0 nrad/s FOS6-02: ARW: 45 nrad/Vs, BI: 51.0 nrad/s

FOSREM as FOS remote controls by webpage

COSPER HANN'S CANTUR HON'S HONE'S HONE'S HONE'S		
	Server and network	PCU CONFIGURATION
	insectors insection in	102-100-110-V0/24
	server UDP 1 data port.	1221 -
	server LIGP' Libring post	
	survey UDP 2 date port:	
	server 1209 2 delang port.	1234 =
	and and a second second second	900 X
	Transfer Interface	english -
		waitus -
	galaxies dated by	****
	Files and directorie	s
	naw feature directory.	Appt/Radiu/teer
	and block division to by	ApplyRookstanchived
	income disactory:	Aught/South/Inseed
	determined assets developing	Appulsatudetared
	statistic disactory	Angel (Reall / Australia
	settigensine toffer size.	1007
	and previous resolutions	100 0
	NTS PICO	
	-	102.108.172.15
	OP5 Inthiste	SJ JMARTHEET

Data	down	loading
------	------	---------

ha frankas gangalan ili fariha da birangan pakan na na ini mangkan mangka na ini pakan na pangkan na mangka na An

COSREM					= 🧨 😄
A Darra A Darras A Darras A Darras A Darras A Darras A Later A Later particul A Later particul	Антики	6 193.98 FTB 16034 193.98 FTB 16034 193.785 193.785 1937 193	Bennet in Commission (2016) Bennet in Commission (2016) Bennet in Commission (2016) Bennet in Commission (2016) Commission (2016) Commission Server in Commission S	Barray 194 206 205 205 Victorian Pro Linear Victorian Victorian Victorian Victorian Victorian Victorian	VIT VID II United II United II Vited III
A Comment A Comment Comment A Contract Comment A Contract Comment A Contract Comment A Commen	And	rise stort testing a		Statistics of the second	

Correlation verification

FOS6-01 and FOS6-02 in the MUT laboratory on the rotary table

Signals recorded by FORSs Z-axes during the medium high-amplitude at a level of 0.25 rad/s and fast-changing excitations (at a level of 100 Hz) as well as high-amplitude at a level of 1.2 rad/s amplitude excitations

Field test in the Kampinos Nature Park by a pair of FORSs (FOS6-01 and FOS6-04)

A weak recording (with an amplitude of about 0.5 mrad/s) generated by the wild animal (elk) moving in the field close to the FORSs location

Pearson correlation coefficient equal to 99.42% and Pearson correlation of about 95% for the X axis, about 99% for Y 99.99 % axis, and about 99% for the Z axis

Rotation Detection During Detonation of an Explosive Charge

On the 7th of October 2023 there were three explosions performed:
1. 12:33 UTC, 5 kg of explosive, 3 m below the ground surface with surface discharge.
2. 13:41 UTC, 5 kg of explosive, 4.5 m below the ground surface without surface discharge.
3. 15:11 UTC, two 5 kg explosive charges installed 5 meters apart were detonated one after the other, 4.5 m below the ground surface, with a distance of 5 m between loads.

		A _{max} [μrad/s]	E _f [μrad]			
Explosion number/ Axis of FORS	х	Y	Z	х	Y	Z	
Explosion 1	140	327	281	69	163	104	
Explosion 2	38	108	83	41	98	94	
Explosion 3	119	177	170	65	111	106	

Data confirmed high reliability of recordings gathered by 3-axial Fibre-Optic Rotational Seismograph (correlation coefficient was near the value of 100%)

FORS recorded successfully artificial explosions in field test carried out in Szopowe, Poland which confirmed its usefulness of monitoring detonation tests, especially in border areas.

FORS main paramters:

• dynamics of 180 dB

2

3

- frequency detection bandpass: from 0.01 to 100 Hz
- built-in time scale synchronization system
- (accuracy 100ns)
- weight: less than 10 kg
- web-Based Management Interface
- possibility of mobile, autonomous operation

Rotational seismology undergoes a rapid development. Future plans – 6 DoF recordings

Conclusions

Any questions?

You can find me at: anna.kurzych@wat.edu.pl a.kurzych@elpromaelectronics.com https://fosrem.eu/

Thank you very much for attention

FOSREM - FROM SKY ACROSS GROUND UP TO UNDERGROUND National Centre for Research and Development project POIR.01.01.01-00-1553/20-00

FOM-MEM - FIBRE-OPTIC MATRIX FOR MECHANICAL EVENTS MAPPING Polish Agency for Enterprise Development project FENG.01.01-IP.02-1714/23