23rd SLOVAK-CZECH-POLISH OPTICAL CONFERENCE

PROMA

ON WAVE AND QUANTUM ASPECTS OF CONTEMPORARY OPTICS

eptember 02:06, 2024

Štrbské Pleso, Slovakia

The usefulness of different kinds of rotational seismometer in seismological and engineering applications

Leszek R. Jaroszewicz^{1,2}, Anna Kurzych^{1,2} ¹Institute of Technical Physics, Military University of Technology., 2 gen. S. Kaliskiego Str., Warsaw, Poland ²Elproma Elektronika Ltd.,2A Duńska Str.,Czosnów jarosz@wat.edu.pl

Motivation

01 Rotational Seismology

a new, emerging field for the study of all aspects of rotational ground motion induced by earthquakes, explosions, and ambient vibrations [Lee et al. *BSSA*, 99, (2009) 945-957]

02 Engineering application

seismic behaviour of irregular and complex civil structures [Trifunac, *BSSA*, 99, (2009), 968-97; Mustafa, InTech, 2015], mines activity, wind power monitoring

03 Seismological application

broadband seismology [Igel et al., *Geophys. J. Int.*, 168, (2006), 182–197], strong-motion seismology [Anderson, 2003, Chap. 57, 937-965], earthquake physics [Teisseyre et al. Springer, 2006; Springer, 2008], seismic hazards [McGuire, *Earthq. Eng. Struct. D.*, 37, (2008), 329–338], seismotectonic's [www.geophysik.un-muenchen.de/~igel/Lectures/Sedi/sedi_tectnics. ppt], geodesy [Carey, Expanding Earth-based observatories for detecting gravitational waves [Ju et al., *Rep. Prog. Phys.*, 63, (2000), 1317–1427; Lantz et al., *BSSA*, 99, (2009), 980-989]

6-DoF

earthquake sources, tilt correction, wavefield separation, wave direction & dispersion, scattering properties, seismic imaging [Murray-Bergquist et al. Sensors, 21 (2021), 3732]

[https://www.businessinsider.com/earthqu ake-taiwan-east-coast-2018-2?IR=T]

Engineering application

For tall structures, even a tiny rocking motions of the building foundation may matter

Snapshot of the model of displacement response to an incident plane P-wave half sine displacement pulse with 45° incident angle [Todorovska, WCEE2024 Processing, 2024]

A slender structure under horizontalrocking ground vibrations [Bońkowski et al., Engineering Structures 155, 387–393, 2018]

Low-frequency content: higher stress in structural element, Horizontal displacement of the center of mass => Overturning moment

High-frequency content: meaningless motion of the building centre of mass +> Local vibration of beams and columns

Seismological application

Energy generated during an earthquake propagates not only in the form of linear motions but also in rotational ones.

Earthquakes are undoubtedly one of the most complex phenomena and it is hard to entirely reflect their complexity in theoretical models

Requirements

Engineering application

signal amplitude: up to 10 rad/s, frequency: 0.01 Hz – 100 Hz

Seismological application

signal amplitude: from 10^{-11} rad/s, frequency: 0.01 Hz – 0.1 Hz

- Insensitivity to linear motion
- Independent power supply
- Mobility, stability with respect to environmental conditions
 - Dynamic range 10⁻⁸ 10 rad/s
 - Frequency band 0.01 100 Hz
 - Power consumption 5 8 W
 - Calibration in situ (permanently)

ROTATIONAL SEISMOGRAPH

network of seismometers + precise time source + recording device + network

[Bernauer et al., J. Seismol., 16, (2012)] [Jarozsewicz et al., Sensors, 16, 2161 (2016)]

[Schreiber U, Kodet J, WCEE Processing, Milan, Italy 2024]

Real areas of the RS applications:

- Indirect rotation research by numerical conversion
- Rotation effects recording during earthquakes
- Teleseismic waves recordings
- Recordings associated with artificial explosions
- SHM as examples of engineering application

Indirect recording by numerical conversion

Ref.	Freq. [Hz]	Mw	R [km]	PGV _h [m/s]	PGV _v [m/s]	PGw₂ [*] [µrad]	PGω _z [mrad/s]	PGω, [µrad]	PGω _x [mrad/s]	PGωy [µrad]	PGω _/ [mrad/s]
Bouchon & Aki,1982		6.6	1	1 - 1.6	-	200 - 300	1.2 -1.5	700		-	
Huang, 2003	<1.0	7.6	6	0.33	0.50	171	0.385	44	0.126	177	0.331
		6.0	8.8	0.25		88.1	1.09	68.9	0.925		
Spundich & Flecher,	< 3.6	4.7	14.0	0.012	_	4.69	0.0944	4.74	0.0926	_	_
2008	< 0.0	5.1	14.4	0.060		20	0.446	0.177	0.372		
		4.9	18.3	0.027		13.6	0.247	9.73	0.215		
Stupazzini, <i>et al.,</i> 2009	< 2	6.0	0.02 - 0.90	0.4	0.3	1 690	1	4 000	1.5	1 000	0.6
Wang, <i>et</i> <i>al</i> ., 2009	<0.5	7.0	< 80	-	-	-	3.00*		0.350*	-	0.6*
Cao &Mavroeidis		6.0; 6.4; 7.2; 7.6	1 - 50	<0.72	<0.24	69.2-194.2		16.9-94.3	-	22.7-98.5	-
, 2019		6.0; 6.4;7.2; 7.6	1 -50	<0.66	<0.93	54.1-144.3		117.9 - 421.9	-	144.2- 325.3	-
Cao		7.5	1 -50	0.11-0.63*	0.03-0.19*	52.6-155*		6.2-43.3*		10.7-47.4*	
&Mavroeidis	< 1.0	6.0	1 -50	0.01-0.23*	0.003-0.045*	5.6-35.5*	-	2.5-23.1*	-	1.4-30.7*	-
, 2021		6.5	1 -50	0.06-0.83*	0.007-0.13*	21-178*		9.7-89*		3.9-29.8*	

PGV_b – peak value of horizontal ground velocity, PGV_b – peak value of vertical ground velocity, PG ω_c – peak value of rotational velocity around the particular axis.

Panning *et al.* - 6DoF data: compared 3 different conversion methods: the traveling wave, the frequency domain, and the difference one. The first two can convert translational components into rotational ones, but the second shows greater accuracy. However, the last one, although it requires denser reference stations, greatly impacts the accuracy of rotational component calculations.

- Bouchon et al.
 discrete wave

 number
 representation
 method,

 PGω ~1.5 mrad/s, PGω_t ~0.3 mrad.;
- <u>Huang</u> numerically integrating accelerograms from a dense acceleration system at the Li-Yu-Tan Dam, PGω for each of the 3-axes ranged from 40 to 200 µrad/s;
- <u>Stupazzini et al.</u> 3D numerical modeling to replicate the rotational wave field generated by strike-slip earthquakes in the near field. The assumed PGω_t for receivers located on soft ground was ~ one mrad, PGω – ten mrad/s;
- <u>Wang et al.</u> –finite-difference method - the variability of the hypocenter leads to significant changes in the ground rotation speed;
- <u>Cao & Mavroeidis</u> finite differential translational motions generated at very closely spaced stations, $PG\omega_t$ ~ 20 to 200 µrad.

Rotation recording during earthquakes

Ref. ES		Sensor	Mw	R [km]	PGVh	PGV _v	PGωz	PGω _x
Rel.	ES	Sensor	IVIW	K [KIII]	[mm/s]	[mm/s]	[mrad/s]	[mrad/s]
Takeo, 1998,	strike-slip fault,		5.7	3.3	290	500	3.3	26
2006	1997	Systron	5.3	3.3	200	100	8.1	27
	seismic swarm at	Donner triaxial gyro	5.0	5.6	100	60	3	6
Takeo, 2009	offshore Ito,	sensor	3.6	5.9	6	2	0.2	1
	Japan, 1998		2.4	4.9	6	0.3	0.03	0.2
Liu et al.	local earthquakes at the HGSD	R-1	5.1	51	-	-	0.63	~0.4
2009	eastern Taiwan		2.5-6.63	14.3-260.4	-	-	0.004-0.63	-
Brokešová & Málek, 2010	earthquake swarm in Western Bohemia, 2008	Rotaphone 3DOF	2.2	4.4	400	-	0.15	-
Brokešová & Málek, 2013	earthquake at the station Sergoula, Greece	Rotaphone 6DOF	4.3	5	4.5	9	~0.4	~0.8
Yin <i>et al</i> ., 2016	215 events at Garner Valley, California, 2008- 2014	R-1	3.0-7.2	14-207	-	-	0.006-0.453	-
Jaroszewicz	local earthquake,	TAPS	3.8	200			0.005	
<i>et al</i> ., 2017	Jarocin, Poland	AFORS	3.0	200	-	-	0.039	-
			4.2	0.5	22.1	11	1.12/0.85	-
Ringler <i>et</i> <i>al</i> ., 2018	150 local earthquake	Two SMHD (ATA)	2.8	≤220			~0.005	~0.00025
	•		≥ 2.0	≤220	-	-	0.0002-2	0.0002-2
Wassermann et al., 2020	volcano-tectonic earthquake	BlueSeis-3A	5.3	1.5	2	1	2.4	2.5
Wassermann et al., 2022	Stromboli volcano, Italy activity	BlueSeis-3A	-	-	<0.01	<0.02	<0.0005	<0.001

Takeda by MEMS gyro: (vibrating tuning fork, vibrating-wheel, resonant wheel, hemispherical resonant, Foucault pendulum apply the Coriolis force to detect the angular velocity) showed that recorded $PG\omega$ are several times larger than simulated by Bouchon&Aki based on the dislocation theory.

Takeo – 3-axial Gyro (Systron Donner)

Z-axis

Horizontal axis

Liu, Yin – R-1 (Eentec)

Brokesova – 3DOF, 6DOF Rotaphone (Czech Republic)

	3-axial GYRO	TAPS	3DOF	6DOF	D	CY	R-1	AFORS-1	BlueSeis-3A	DRIVE	
Device	The second second			A A		B		P	100		SYNCHRONOUS RATE SIGNAL
Year of construction	2008	1998	2010	2012	2015	2019	2006	2010	2017		
Sensitivity [nrad/s]	no data	100	16.7	2.16	3.77	0.042	1200	4	20	MEMS - vibrating tuning	
$\Omega_{\text{Max.}} \left[\text{mrad/s}\right]$	873	100	10	287	31.7	31.68	0.1	64.3	0.1	wheel, resonant wheel, l resonant, Foucault pend	lulum apply the
Dynamic range [dB]	no data	120	100	120	120	120	110	124	135	Coriolis force to detect t velocity	the angular
Frequency range [Hz]	DC - 75	0.7 – 50	1 – 100	2 – 60	2 – 80	1–100	0.05 - 20	0.83-106	DC - 100	eraddig wieleddig O	Icroporous spacers nousing
Sampling rate	no data	100	250	250	250	250	N/A	212	up to 200	ectrochemical entrary vertical veloci profiles T <t< td=""><td></td></t<>	
Sensors: [No. x type]	MEMS	2 x SM-3	8 x LF-24	9; 12 SM-6	16 x SM-6	12 x SM-6	fluid MET	optical	optical	R-1 (R-2) - no flat above instead declare 110 dB, 2	1 Hz, 80 dB
Eigen frequency	no data	45	1	4.5	4.5	4.5	N/A	N/A	N/A	18% (R-2) signal deviatio - +50 C.	
Spacing of sensors [m]	N/A	0.28	0.3	0.3	0.4	0.3	N/A	N/A	N/A	7 geophone CINER II	NING SCHEW VEHICAL AND FOREXVIAL
Operating temp. [ºC]	< 125	-10 – +45	-20 - +40	-20 - +40	-20 – +100	-40 - +70	-15 - +55	-10 - +50	-10 - +50	9 12 10 vertical geophone MILL are	
Weight [kg]	0.3	15	4.5	9.5	15.3	22	1.0	18	20	1 Mitte ave	VETAL SUPPORT PLATE WITH SPICES Goad in full measurements
Dimensions [LxWxH] [cm]	no data	45x18x35	25 [*] x 1	35x30x43	44.5x12	55 [*] x50	12x12x9	70* x 16	30*x60	Rotaphone (3DOF, 6DOF determined by more acc	urately as
* diameter										result of more than one pair; frequency ranges a	• ·

AFORS-1 (uniaxial), BlueSiei-3A (triaxial) optical system based on (or uses) FOG – physically the Sagnac effect in fiber-optic loop interferometer, mass-free (non-inertial) system -> probably the best solution for rotational seismograph fulfill all RS requirements.

SDOF, D) Ω is e accurately as one geophone pair; frequency ranges are still too narrow

BACKGROUND

The direct utilization of the Sagnac effect

Sagnac effect (1913) shows the difference between phase of two beams propagating around closed optical path, in opposite direction when this path is rotating with rotational rate Ω . In a fibre-optic implementation (1978) the rotation rate Ω is expressed by induced phase shift $\Delta \phi$ as:

$$\Omega = S_o \cdot \Delta \varphi = \frac{\lambda c}{4\pi RL} \cdot \Delta \varphi$$

L – length of the fiber in the sensor loop, *R* – sensor loop radius, λ – wavelength of used source, *c* – velocity of the light in vacuum, *S*₀ – the optical constant of an interferometer

Teleseismic waves recording

Ref.	ES	Sensor	M _w	R [km]	PGV _h [m/s]	PGω _z [nrad/s]	PGω _x [nrad/s]	PGω _y [nrad/s]	•
Pancha <i>et al</i> . 2000	New Ireland, 1999	C-II, G0	7.0	~4 700		10 (C-II)	5 (G0)		•
	Vanuatu, 1999	C-II	7.3	~3 500	-	8		-	•
lgel <i>et al</i> . 2005	Thrust Japan	G-ring	8.1	~8 830		~35	-		
lgel <i>et al</i> . 2007	Germany to Great Andaman	G-ring	5 - 9	370–12 700	-	~0.10-40	-	-	
	Kamachatka, 2006		7.6	~6 500	5 197	~10			
Schreiber et al.	Mexico, 2006	GEOsensor	5.4	~2 000	4 646	~5			
2009	California, 2007	GEOSEIISUI	3.6	~200	8 670	~16	-	-	1/s
	California, 2007		3.9	~250	14 512	~30			e [µrao
Belfi et al . 2012	Japan, 2011	G-Pisa	9.0	-	-	~60	-	-	olitude
	Papua New Guinea, 2016		7.9		~150.10 ⁻⁶			~30	lk am
	Vanuatu, 2016		6.7		~6 ·10 ⁻⁶	·		~2	Rotation rate peak amplitude [jurad/s]
	New Caledonia, 2016	BRS beam	7.2		~40.10-6			~10	
Ross <i>et al.</i> 2017	North of Ascension Island, 2016	rotation sensor	7.1	-	~15·10 ⁻⁶			~4.5	Rotat
	New Zealand, 2016		7.8		~200.10-6			~60	
	Papua New Guinea, 2017		7.9		~150·10 ⁻⁶			~30	[Jurad/s]
Simonelli <i>et al</i> . 2018	Series in Italy, 2016	GINGERino	3.5–5.9	38 -77	-	~600–17 000	-	-	plitude [µr
Sollberger <i>et al.</i> 2020	Gulf of Alaska, 2018	ROMY	7.9	-	-	~6	~8	~4	te peak am
	Papua New Guinea, 2019		7.6	14 000		~8.5	~9		tion rat
lgel <i>et al</i> . 2021	Turkey, 2019	ROMY	5.7	1 500	-	~5	~9	-	Rota
	Austria, 2018		3.8	144		~18.9	~18		

- strong earthquakes
- extremly distance R
- extremely low PGω (nrad/s) amplitude

Name	C-I	C-II	G-0	G	UG1	UG2	UG3	
				Sec. 1				
Year	1992/2011	1997/2011	1998/2011	2001	201/2011	2004/2011	2009	
Place		hmere, New Z		Wettzell, GE		hmere, New Zea		(a)
Area [m ²]	0.748 (0.85 m square	1	12.25 (3.55 m square	16.0 (4.0 m square	367.5 (17.5x 21)	833.7 (1.0 x 39.7)	367 (7.5x 21)	
Perimeter	3.48 m	4.0 m	14 m	16 m	77 m	121.4 m	77 m	- A Stand
Sensitivity [nrad/s/√Hz]	no data	0.146	0.0116	0.012	0.0171	0.0078	no data	10 m
$\Delta\Omega/\Omega_{E}$	no data	1 · 10 ^{−6}	5 · 10 ^{−6}	3.4· 10 ^{−8}	3 · 10 ^{−8}	2 · 10 ⁻⁸	no data	
Name	PR-1	GEOsensor	G-Pisa	GINGERino	PP-2	ROMY		(c)
Year	2004	2005	2008	2014	2014	2016		
Place	Cashmere	California		Pisa, Italy		Furstenfeldbu	ck, Germany	
Area [m ²]	2.56 (1.6 m square	2.56 (1.6 m square	1.96 (0.9x0.9 to 1.4x1.4)	12.96	2.56	72 -3 vertical 50- horizontal		
Primeter	6.4 m	6.4 m	5.4 m	14 m	6.4 m	36 m; 30 m	The start	
Sensitivity [nrad/s/√Hz]	1.5	0.108	~1.0	0.1	2	0.08 - 1.0		
$\Delta\Omega/\Omega_{E}$	8.5 · 10 ⁻⁴	1 · 10 ⁻⁷	2 · 10 ⁻⁵	~ 10 ⁻⁶	~6 · 10 ⁻⁵	5 · 10 ⁻⁵		
			ROMY – R	Otational M	otion in seis	mologY		

Recordings associated with artificial explosions

and the second						
VS	Sensor	R [km]	PGω _z [mrad/s]	PGω _x [mrad/s]	PGω _y [mrad/s]	0.004 0.0002
94 1 kT chemical explosion a the Nevada Test Site	t QRS11	1	-	38	-	0.0001
n et Demolition blast of buildir in Munich, Germany	g R-1	0.2	0.02	0.008	0.05	
3000 kg explosives,			0.268-0.966	0.370-2.741	0.627-2.524	
750 kg explosives, TAIGE experiment, Tawian	R R-1	0.2539–0. 6082	0.301-0.563	0.235-1.750	0.394-1.185	
 Medium-size quarry blas 3044 kg explosive, Czec 	Peterhene	0.362	~1	~4.5	~2	-0.0002 -0.0004 -0.00025
al. Ignition of Betsy gun at Silver Lake, California	METR-03	<1	-	<0.1	<0.2	0 0.5 1 1.5 2 2.5 3 0 5 10 15 20 25 30 35 Time [ms] Time [ms]
al. Digging shafts with the multiple blasts technique et Książ, Poland	FOSREM, TAPS, RS.LQ-RP/P	0.075	0.05-1	-		FFB3
t al. 500 g explosive, Fürstenfeldbruck, Germai at	BlueSeis-3A, FOSREM, ROMY, Rotaphone-CY, y FARO, PHINS, Quadrans, MEMS (Horizon, Gladiator)	~0.05	~0.5 (BlueSeis-3A) ~1 (FOS5-01) ~0.5 (FOS5-02) <0.5* (BlueSeis-3A) ~0.005* (ROMY) <0.02* (FARO) <0.025* (FOS5) ~0.025* (FOHINS) <0.025* (Quadrans) <0.05* (Rotaphone)	<0.1* (BlueSeis-3A) <0.15* (PHINS) < 0.1* (Quadrans) <0.09* (Rotaphone)	~0.1-0.15 (BlueSeis-3A) <0.15 (PHINS) <0.15 (Rotaphone) <0.15* (BlueSeis-3A) ~0.15* (PHINS) < 0.15* (PHINS) <0.15* (Rotaphone)	10m x 10m Quadrans, CEA-array Giadiator/Horizon Rotaphone FosREM area of possible area of possible Broadbannet For deployment possible F27 Broadband station 50 m
VibroSeis truck, Fürstenfeldbruck, Germai	y FOS5-1	0.096 0.105 0.113 0.121 0.130 0.138	0.0177 0.0252 0.0386 0.0158 0.0156 0.0156	-	-	XB100 XB101 KB101 ISAE BS1 XB102 FUR QUADRANS ES2
021 near field explosion, Chin	a RotSensor3C	0.150	~11	~11	~16	PHINS FOS3-1/2
Medium-size blast at the Klecany quarry, Czech Republic	Rotaphone, R-1, ADR (array- derived-rotation)	0.240	~0.05 (Rotaphone) ~0.01 (R-1) ~0.05 (ADR) ~0.05 (Rotaphone) ~0.03 (R-1)	~0.25(Rotaphone) ~0.1 (R-1) ~0.25 (ADR) ~0.25 (Rotaphone) ~0.2 (R-1)	~0.15 (Rotaphone) ~0.03 (R-1) ~0.1 (ADR) ~0.2 (Rotaphone) ~0.08 (R-1)	Rotaphone CUBE
n & medium-:	size blast at the quarry, Czech	size blast at the Rotaphone, R-1, quarry, Czech ADR (array-	size blast at the Rotaphone, R-1, quarry, Czech ADR (array- 0.240	size blast at the Rotaphone, R-1, quarry, Czech ADR (array-derived-rotation) 0.240 ~0.05 (Rotaphone) ~0.01 (R-1) ~0.05 (ADR) ~0.05 (ADR) ~0.05 (Rotaphone)	size blast at the quarry, Czech epublic drived-rotation)	size blast at the quarry, Czech epublic Rotaphone, R-1, ADR (array- derived-rotation) 0.240 ~0.05 (Rotaphone) ~0.01 (R-1) ~0.25 (Rotaphone) ~0.05 (ADR) ~0.15 (Rotaphone) ~0.05 (ADR) ~0.05 (Rotaphone) ~0.05 (Rotaphone) ~0.25 (ADR) ~0.11 (ADR)

Experiment Fürstenfeldbruck 19-22.11.2019

dell'delitere della de

Fibre-Optic Rotational Seismograph historical brief

1998

2001

Ω_{min}: 3.49·10⁻³ rad/s SL: 380 m PANDA Radius: 0.1 m ∧B: DC – 100 Hz

FORS-I

 Ω_{min} : 2.2·10⁻⁶ rad/s Ω_{max}: 4.8·10⁻⁴ rad/s SL: 400 m PANDA Radius: 0.1 m AB: DC - 100 Hz

FORS-II (FOS1)

Ω_{min}: 4.2·10⁻⁸ rad/s Ω_{max} : 4.8·10⁻⁴ rad/s; SL: 11 000 m SMF Radius: 0.34 m AFORS (FOS2) $\Omega_{\rm min}$: 4.10⁻⁹ rad/s, Ω_{max}: 6.4·10⁻³ rad/s SL: 15 000 m SMF Radius: 0.34 m AB: 0.83-06 Hz

FOSREM (FOS3 & FOS4) Ω_{min} : 2.10⁻⁸ rad/s,

 Ω_{max} : few rad/s SL: 5 000 m SMF Radius: 0.125 m ∆B: DC-328 Hz

FOS5-0# (3=1,...) $\Omega_{\rm min}$: 7.10⁻⁸ rad/s, Ω_{max} : 10 rad/s SL: 5 000 m SMF. Radius: 0.125 m

FOSREM (FOS6) 3- Axis with 100 ns time synchronization Ω_{min}: 35 nrad/s Ω_{max} : 10 rad/s SL: 6 000 m SMF Radius: 0.125 m Weight: 10 kg, ∆B: DC - 100 Hz

Fibre-Optic Seismograph

OPTICAL PART

generates the phase shift $\Delta \phi$ proportional to the measured rotation rate Ω which is perpendicular to the sensor loop plane

ELECTRONIC PART

enables to calculate and record information about rotational motions via digital closed-loop signal processing

Laboratory analysis of FORS' parameters

Allan Variance analysis Theoretically

Allan Variance analysis

Data gathered in the Military University of Technology, Poland as Autonomous Rresion Metod for Allan Variance (ARMAV) [Jurando, et al., *Navigation*, 66 (2019), 1-13]

$$S = \frac{\sqrt{2}\lambda c}{2\pi DL} \sqrt{\frac{4kT}{R\eta^2 P^2} + \frac{ei_d}{\eta^2 P^2}} + \frac{e}{\eta P} + \frac{\lambda^2}{4c\Delta\lambda} \equiv_{|\Delta B=1Hz} ARW$$

where: λ – central light wavelength (1 550 nm), *c* – speed of light, D – loop diameter (0.25 m), *L* – loop length (about 6 000 m), k – Boltzmann's constant, *T* – temperature (293 K), *R* – resistance of the trans-impedance transducer of the photodetector device (20 k Ω), η – efficiency ratio of the photodiode (0.85 A/W), *P* – incident optical power on the APD, *e* – elementary charge, *i*_d – photodiode dark current (80 nA), $\Delta\lambda$ – spectral width of the light source (40 nm).

The calculated theoretical values of ARW for each optical head for four FORS type FOS6 were in the range of **4.49-4.85 nrad/s** \sqrt{Hz} , depending on total optical losses and fiber length in the given optical head.

$ADEV(t)=\sqrt{AVAR(t)}$ \rightarrow ASD instead of PDS

FOS6-01: ARW: 35 nrad/s/√Hz, BI: 10.0 nrad/s FOS6-02: ARW: 45 nrad/s/√Hz, BI: 15.0 nrad/s

FOSREM as FOS remote controls by webpage

(EDSREM					
A stand 2. denom 3. denom 4. denom 4. denom 5. denom 6. deno	NETRODAL NEL SALITATION NEL SALITATION NEL SALITATION S	2 ARE UP 00 * 00 *	Feedball (M + 	Facilities 94	
a balance - Kan Aste T Ase companie E alerent later 0 the same	FOS6-01	~ 1981	100 0 	· · ·	
Symmetry and a symmetry		Keplaste 25/26-12-2023 ARW BI ARW [mrad/s] [mrad/s] X (direction Up) 45 11 Y (direction E) S1 8	2 10 10 10 10 10 10 10 10 10 10 10 10 10	= A	

PCU CONFIGURATION
Server and network
95 192,168,072,13/24
Terrerari temeface Ap. 162.468.176.1024
server UDP 1 data port. 1221 🗉
server LCP*1 obtag parts BMR 3
server UDF 2 data pert. 1224 II
arver UDF 2 delag port
energial -
toorer interface warfail -
gateway check to: 68.8.8
Files and directories
naw feature directory) Appt/featurese
ambiguit diverting Aug/Aug/auctiond
Averaged desertory: Averaged and a second se
distantiant developy Apportunit/develop
statistic directory reputed, had an
webpresentadhe size 5000 🗉
weitpenden modulan 100 🗉
NTS PICO
100 TB0 100 110 10
OP5 Intrivider 32.200111007 OP5 Soughture 20.60706
0P5 looghude 30.6003e regraaf lattiluide 5.6.78627 (2

Paramtors change

Data downloading

ander findeling for the state of the state o

n for for some of the for the state of the second for a new second of the second s

Localization

Correlation verification

FOS6-01 and FOS6-02 in the MUT laboratory on the rotary table

Signals recorded by FORSs Z-axes during the medium highamplitude and fast-changing excitations as well as highamplitude amplitude excitations

Pearson correlation coefficient equal to 99.42% and 99.99 %

Field test in the Kampinos Nature Park by a pair of FORSs (FOS6-01 and FOS6-04)

A weak rotational disturbance recording (with an amplitude of about 0.5 mrad/s) generated by the wild animal (elk) moving in the field close to the FORSs location

Pearson correlation of about 95% for the X axis, about 99% for Y axis, and about 99% for the Z axis

Rotation Detection During Detonation of na Explosive Charge

On the 7th of October 2023 there were three explosions performed:

1. 12:33 UTC, 5 kg of explosive, 3 m below the ground surface with surface discharge.

2. 13:41 UTC, 5 kg of explosive, 4.5 m below the ground surface without surface discharge.

3. 15:11 UTC, two 5 kg explosive charges installed 5 meters apart were detonated one after the other, 4.5 m below the ground surface, with a distance of 5 m between loads.

		A _{max} [µrad/s]	Ε _f [µrad]			
Explosion number/ Axis of FORS	Х	Y	Z	Х	Y	Z	
Explosion 1	140	327	281	69	163	104	
Explosion 2	38	108	83	41	98	94	
Explosion 3	119	177	170	65	111	106	

Thank You For Your Attention

STATUTORY ACTIVITY the Military University of Technology Grant UGB 725

FOSREM - FROM SKY ACROSS GROUND UP TO UNDERGROUND National Centre for Research and Development project POIR.01.01.01-00-1553/20-00

FOM-MEM - FIBRE-OPTIC MATRIX FOR MECHANICAL EVENTS MAPPING Polish Agency for Enterprise Development project FENG.01.01-IP.02-1714/23

